• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La méthode des saisons climatiques : stratégie passive de conception architecturale de bâtiments basse consommation énergétique en climat très chaud / The climatic seasons method : a passive design strategy for low energy consumption buildings in very hot climate

Yusta Garcia, Ferran 19 September 2018 (has links)
Si un concepteur, architecte ou ingénieur, veut concevoir un logement de basse consommation et le site du projet se trouve dans une région au climat froid, les réponses sont nombreuses et la littérature scientifique très abondante. Si le site de notre projet se situe en climat chaud, voir très chaud, le nombre de méthodes simples pour concevoir une maison de basse consommation diminue drastiquement. La solution la plus habituelle des concepteurs non initiés à la basse consommation est de faire appel à un ingénieur d’un bureau d’études énergétiques, qui saura proposer des simulations à partir d’un modèle thermique-dynamique et anticiper la consommation du modèle. La mission d’un bureau d’études a un certain coût, et ses services ne peuvent pas être accessibles à tous les projets. Ainsi, des milliers d’architectes en climat chaud proposent des projets inspirés des références lointaines ou des réalisations non adaptées sans les conseils d’un spécialiste de l’énergie du bâtiment. Ces projets, très énergivores, continuent à croître sans cesse. Pour tous ces concepteurs des projets de taille modeste nous proposons dans cette étude une méthode facile, efficace et accessible à tous permettant de prendre conscience des enjeux bioclimatiques et les options architecturales qui existent pour réussir un projet de basse consommation, puis de le défendre auprès de ses commanditaires. En nous appuyant sur les informations en ligne accessibles à tous, nous proposons une méthode basée sur l’utilisation des degrés-jour de refroidissement et de chauffage. Une série de simulations robustes sur un modèle thermique dynamique générique fourni des résultats qui pourront être interprétables par les concepteurs et projetés sur leurs propres conceptions.La première partie de ce document analyse la construction et la culture en climat chaud: méthodes de classification climatique, les phénomènes physiques les plus significatifs en lien avec la basse consommation,et les notions de confort et température ressentie. En suite, nous proposons un outil d’aide à la conception : la Méthode des Saisons Climatiques, une méthode basée sur un concept très simple : l’ouverture ou fermeture de la maison à l’extérieur en fonction des conditions extérieures quantifiée par les degrés-jour du site. Elle permet de faire une classification climatique du site très orientée vers la conception bioclimatique. Elle base le classement d’un site selon des journées types, S1 à S6, selon jour/nuit froid/froide, tempéré/froide, tempéré/tempérée, chaud/froide, chaud/tempérée et chaud/chaude respectivement. Cette nouvelle classification peu ts’appliquer à tous les climats de la Planète. Une période de l’année continue avec une même journée type donne lieu a une Saison Climatique. Chaque Saison climatique aura des spécificités architecturales propres,et parfois contradictoires entre deux saisons climatiques différentes. L’objectif est de trouver la combinaison architecturale la plus efficace pour une période annuelle complète.Des modélisations Energy+ seront faites pour ces 6 journées types ainsi que pour une période annuelle dans une ville au climat très chaud : Dubaï. Des actions architecturales sont évaluées avec un modèle thermique dynamique.Les actions architecturales seront classées par efficacité énergétique et par temps de retour surinvestissement . Deux maisons idéales par journée type seront proposées : la maison la plus performante et la maison la plus rentable. Une méthode de combinaison d’actions architecturales permettra de trouver une combinaison cohérente d’actions en fonction du climat annuel d’un site. Ensuite nous proposerons les caractéristiques communes, un socle commun, de la maison en climat très chaud de la région du Moyen Orient. / The last 25 years have been ground-breaking in architectural design on low energy consumption in cold climate, mainly in north-western cultures. For an architect today, the method to design a passive house in cold weather and the choice of the Architectural Actions (AA), are clearly established. When the question comes to how to build a passive house in warmer, hot, and very hot climates, the strategies arepoor and often results of a combination of western strategies with a local relook. From several visits in MiddleEast countries, Saudi Arabia, UAE, Oman, Palestine, Qatar, we concluded that the strategy for low consumption houses is not established yet and poorly grasped. The lack of training on low energy consumption in hot climate and the low price of energy, force designers and owners to rely on over usage of air-conditioning systems as measures to catch up on poor bioclimatic design. This method proposes a new approach on bioclimatic designfor hot climates from an architect point of view. It is based on a Cooling Degrees Days (CDD) and Heating Degrees Days (HDD) approach, a state of art of contemporary architecture and professional experience. Localclimates are classified according to the energy-hunger of six situations of the exterior temperature during night/day : cold/cold, cold/cool, cool/warm, cold/hot, cool/hot, and hot/hot as CDD and HDD of the twelve month ofthe year. A group of days on one of those situations will be called “climatic season”. In parallel we will create two main “climatic situations”: people keep the house closed to the exterior or opened to the exterior. We will associate passive strategies to these two differents ways to live in the house: “cold” and “hot” to a closed houseand “cool” and “warm” to a house opened up to the exterior. This method allows classifying any climate in theworld under these six climatic seasons. Our climate classification can now be associated to different strategies that we will call “architectural actions” as house is closed or opened. We could already start to design a house from here, but to better understand the influence of each action we have created an Energy+ model to analyze individually the effect of a single AA. The performance of each action is evaluated under the situations of six representative journeys as well as a year round on a very hot city: Dubai. The result of the effect good or badof action during each different season situation allows us to create the best combination of AA that are best fora year round climate resulting of the combination of several climatic seasons. This low-tech method will help usto find the common features of the houses of different hot climates of a big region and find the best typology. We have carried in parallel a cost study of the base house and the financial incidence of each single action to evaluate also the payback period by action.
2

Urban heat Island mitigation strategies in an arid climate. In outdoor thermal comfort reacheable / Réduction des ilots de chaleur urbains sous climat aride. Le confort extérieur est-il possible

Ridha, Suaad 28 April 2017 (has links)
De nombreuses études au cours des dernières décennies ont porté sur l'effet l’îlot de chaleur urbain (ICU). Les efforts initiaux visant à comprendre les facteurs qui influent sur l’ICU ont contribué à la mise en place de solutions et de stratégies d'atténuation adaptées. Les stratégies d'atténuation comprennent généralement l'augmentation de l'albédo urbain (réflectivité au rayonnement solaire) et l'évapotranspiration. Les augmentations d'albedo sont obtenues grâce à des technologies de toiture et de pavage ayant un albédo élevé. Une augmentation de l'évapotranspiration est obtenue par une combinaison de la diminution de la fraction de surfaces imperméables et la plantation de végétation dans les zones urbaines. Le confort thermique extérieur est défini à partir d’indices prenant en compte différents paramètres physiques et traduit la perception et la satisfaction des piétons. Ce confort est très difficile à obtenir en climat chaud et aride. Par conséquent, le travail présenté dans ce document met l'accent sur les méthodes appropriées pour réduire l’ICU et ainsi améliorer le confort thermique en plein air des piétons. Jusqu’à présent, peu de recherches ont été menées sur le confort thermique extérieur dans un climat chaud et aride. Les études sur l'atténuation de l'ICU et le confort thermique extérieur sont pratiquement inexistantes pour la ville de Bagdad. Bagdad a un tissu urbain complexe avec des constructions modernes, des maisons traditionnelles et des éléments caractéristiques du patrimoine local. Le climat en été est chaud, et les mois d'été sont considérés comme la plus longue saison avec près de 7 mois de l'année. Dans un premier temps, cette étude se concentre sur l'étude des stratégies d'atténuation à envisager afin d’évaluer comment le confort des piétons est affecté par les choix de conception des constructions, en comparant un quartier traditionnel à un quartier moderne. L’étude envisage ensuite la façon dont la végétation et les ombrages contribuent à réduire l'effet de l'ICU et à améliorer le confort thermique extérieur. Quatre scénarios différents sont élaborés pour évaluer le rôle d’éléments végétaux tels que les arbres, l'herbe et les différents modèles d'ombrage. L'évaluation a été effectuée le jour le plus chaud de l'été, la température radiante moyenne, l'humidité spécifique, la température de l'air et les distributions de la vitesse du vent ont été analysées à l'aide du logiciel ENVI-met. Le confort thermique est ensuite évalué à l'aide des indices thermiques de la température équivalente physiologique PET et du PMV étendu aux ambiances extérieures. En outre, une proposition de solution est abordée afin d’étudier son impact sur le confort thermique pour la journée la plus chaude (situation extrême) et une journée typique d’été. Les résultats ont révélé une amélioration du confort thermique dans la journée typique d’été. L'étude montre comment les facteurs urbains tels que le rapport d'aspect, la couverture végétale, les ombres et la géométrie du quartier sont des éléments cruciaux que les urbanistes et les municipalités doivent prendre en compte, en particulier pour les nouveaux aménagements urbains dans un climat chaud et aride. Une proposition d’aménagement global pour atténuer les ICU dans le cas d’un nouveau quartier sous climat aride, est détaillée en fin de mémoire. / Numerous studies over the past several decades focused on the effect of the Urban Heat Island. Initial efforts on understanding the factors affecting UHI contributed to proceed the appropriate solutions and mitigation strategies. Mitigation strategies comprise increase both urban albedo (reflectivity to solar radiation), and evapotranspiration. Albedo increases are obtained through high albedo roofing and paving technologies. An increase in evapotranspiration is achieved through a combination of decreasing the fraction of impervious surfaces and planting vegetation in urban areas. The outdoor thermal comfort is influenced by the perception and satisfaction of the pedestrians, especially in hot and arid climates. Consequently, this work focuses on the appropriate methods for reducing the Urban Heat Island and thus to enhance the pedestrians outdoor thermal comfort. However, there is limited research conducted on the outdoor thermal comfort in hot and arid climate. The studies on the mitigation the Urban Heat Island and the outdoor thermal comfort are almost non-existent for Baghdad city. Baghdad has a complex urban fabric with modern design constructions buildings, traditional and heritage houses. The climate in summer is hot, and summer months are considered the longest season with nearly 7 months of the year. This study focuses on investigating possible mitigation strategies to ensure how pedestrian comfort is affected by the constructions design choices comparing a traditional district to a modern one, and on how vegetation and shading patterns contribute to reducing the effect of UHI and improving the outdoor thermal comfort. Four different scenarios are designed to assess the role of vegetation elements such as trees, grass, and different shading patterns. The evaluation was performed on the hottest day in summer, the mean radiant temperature, specific humidity, air temperature, and wind speed distributions have been analyzed using ENVI-met software. Thermal comfort is assessed using the thermal indices the Physiological Equivalent Temperature PET and the Predicted Mean Vote PMV. Also, a proposal model is designed to evaluate the thermal comfort on the hottest day and the typical day in summer. The results revealed an improvement on thermal comfort in the typical day in summer. The study shows how the urban factors such as the aspect ratio, vegetation cover, shadings, and geometry of the canyon are crucial elements that urban planners and municipalities have to take into account, especially for new urban developments in hot, arid climate.

Page generated in 0.0528 seconds