• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 11
  • 9
  • 9
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 33
  • 18
  • 18
  • 17
  • 13
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Improving Climate Projections Through the Assessment of Model Uncertainty and Bias in the Global Water Cycle

January 2013 (has links)
abstract: The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the Coupled Model Intercomparison Project (CMIP); these simulations are ensemble-averaged to construct projections for the 21st century climate. However, a significant degree of bias and variability in the model simulations for the 20th century climate is well-known at both global and regional scales. Based on that insight, this study provides an alternative approach for constructing climate projections that incorporates knowledge of model bias. This approach is demonstrated to be a viable alternative which can be easily implemented by water resource managers for potentially more accurate projections. Tests of the new approach are provided on a global scale with an emphasis on semiarid regional studies for their particular vulnerability to water resource changes, using both the former CMIP Phase 3 (CMIP3) and current Phase 5 (CMIP5) model archives. This investigation is accompanied by a detailed analysis of the dynamical processes and water budget to understand the behaviors and sources of model biases. Sensitivity studies of selected CMIP5 models are also performed with an atmospheric component model by testing the relationship between climate change forcings and model simulated response. The information derived from each study is used to determine the progressive quality of coupled climate models in simulating the global water cycle by rigorously investigating sources of model bias related to the moisture budget. As such, the conclusions of this project are highly relevant to model development and potentially may be used to further improve climate projections. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2013
52

The Shift of Precipitation Maxima on the Annual Maximum Series using Regional Climate Model Precipitation Data

January 2013 (has links)
abstract: Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level. Annual maximum series were derived for each model pairing, each modeling period; and for annual and winter seasons. The reliability ensemble average (REA) method was used to qualify each RCM annual maximum series to reproduce historical records and approximate average predictions, because there are no future records. These series determined (a) shifts in extreme precipitation frequencies and magnitudes, and (b) shifts in parameters during modeling periods. The REA method demonstrated that the winter season had lower REA factors than the annual season. For the winter season the RCM pairing of the Hadley regional Model 3 and the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model had the lowest REA factors. However, in replicating present-day climate, the pairing of the Abdus Salam International Center for Theoretical Physics' Regional Climate Model Version 3 with the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model was superior. Shifts of extreme precipitation in the 24-hour event were measured using precipitation magnitude for each frequency in the annual maximum series, and the difference frequency curve in the generalized extreme-value-function parameters. The average trend of all RCM pairings implied no significant shift in the winter annual maximum series, however the REA-selected models showed an increase in annual-season precipitation extremes: 0.37 inches for the 100-year return period and for the winter season suggested approximately 0.57 inches for the same return period. Shifts of extreme precipitation were estimated using predictions 70 years into the future based on RCMs. Although these models do not provide climate information for the intervening 70 year period, the models provide an assertion on the behavior of future climate. The shift in extreme precipitation may be significant in the frequency distribution function, and will vary depending on each model-pairing condition. The proposed methodology addresses the many uncertainties associated with the current methodologies dealing with extreme precipitation. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2013
53

Využití klasifikací atmosférické cirkulace v interpretaci výstupů z klimatických modelů / The application of atmospheric circulation classifications in the interpretation of climate model outputs

Stryhal, Jan January 2018 (has links)
The application of atmospheric circulation classifications in the interpretation of climate model outputs Mgr. Jan Stryhal Automated (computer-assisted) classifications of atmospheric circulation patterns (circulation classifications, for short) constitute a tool widely used in synoptic and dynamic climatology to study atmospheric circulation and its link to various atmospheric, environmental, and societal phenomena. The application of circulation classifications to output of dynamical models of the atmosphere has developed considerably since the pioneering studies about three decades ago, reflecting rapid development in statistics, computing technology, and-naturally-climatological research, increasingly more and more dependent on simulations of the atmosphere, facing the paradigm of anthropogenic climate change. An uncoordinated use of various statistical approaches to analyzing output of global climate models (GCM) or their various ensembles, and an arbitrary selection of circulation variables, spatial and temporal domains, and reference datasets, have contributed to a need for a comparative study, which would shed some light on the sensitivity of studies dealing with an intercomparison of circulation classifications in two datasets to subjective choices. The present thesis responds to this need...
54

Frekvenční analýza srážkových úhrnů / Frequency analysis of precipitation amounts

Rulfová, Zuzana January 2016 (has links)
Title: Frequency analysis of precipitation amounts Author: Mgr. Zuzana Rulfová Department: Department of Atmospheric Physics Supervisor: RNDr. Jan Kyselý, Ph.D., Institute of Atmospheric Physics CAS Abstract: This thesis deals with analysing characteristics of mean and extreme precipitation in observations and regional climate models (RCMs) with respect to their convective and stratiform origin. An algorithm for subdivision of precipitation amounts into predominantly convective and stratiform using station weather data is proposed and evaluated. The time series of convective and stratiform precipitation from the Czech Republic over 1982-2010 are used for analysing basic climatological characteristics of precipitation, including extremes, and evaluating RCMs from the ENSEMBLES project. Projected changes of convective and stratiform precipitation in Central Europe (the Czech Republic) are analysed using data from RCM simulations from the EURO-CORDEX project. The last part of the thesis introduces a new statistical model for analysing precipitation extremes. This model takes advantage from knowledge of origin of precipitation extremes. In future climate we could expect more convective and stratiform precipitation amounts in all seasons except summer, when climate models project decline in amounts of stratiform...
55

Impact of Global Climate Change on Extreme Streamflow: A Case Study of the Great Miami River Watershed in Southwestern Ohio

Shrestha, Sabin 22 May 2017 (has links)
No description available.
56

Distribution des précipitations hivernales sur le Maroc dans le cadre d'un changement climatique : descente d'échelle et incertitudes / Distribution of Moroccan winter precipitation in the context of climate change : downscaling and uncertainties

Driouech, Fatima 06 October 2010 (has links)
Dans le contexte du changement climatique, il est nécessaire d'affiner les informations relatives à l'évolution du climat dans un pays, susceptible d'être négativement impacté par le réchauffement global, comme le Maroc. En effet, les différentes études de projections futures, dont celles du GIEC, sont basées majoritairement sur les sorties de modèles climatiques à faible résolution qui ne permettent pas d'aborder les échelles régionales et locales. La première partie de ce travail concerne l'étude des tendances et évolutions observées au niveau du climat du Maroc à travers un certain nombre d'indices climatiques. Outre la forte variabilité interannuelle des précipitations et l'augmentation de la fréquence des sécheresses depuis le début des années 1980, la distribution des précipitations du Maroc a bien connu un changement au cours de la période 1961-2008. Ce changement, consistant en une évolution vers des conditions plus sèches, a coïncidé avec une augmentation de la température moyenne en toutes saisons. L'évaluation des changements futurs est réalisée tout d'abord à l'aide d'une descente d'échelle dynamique effectuée avec le modèle ARPEGE-Climat dans sa version à résolution variable. L'examen des capacités du modèle, dont la résolution est de l'ordre de 50km sur le Maroc, a montré son aptitude à simuler correctement la circulation de grande échelle ainsi que la variabilité interannuelle des précipitations marocaines en dépit d'une sous-estimation de leur quantité. A l'horizon 2021-2050, une baisse des cumuls généralisée à tout le pays concernerait la saison d'hiver (DJF). Si on se limite à la zone située à l'ouest des montagnes de l'Atlas, la baisse concernerait la partie la plus pluvieuse de l'année (ONDJFM). Cette baisse serait accompagnée d'une diminution du nombre de jours humides et du nombre d'événements de fortes précipitations ainsi que d'une augmentation de la persistance temporelle de la sécheresse. Ce changement de la distribution des précipitations coïnciderait avec un réchauffement qui se manifesterait à la fois aux échelles saisonnière et annuelle. Les sorties d'une dizaine de modèles régionaux de climat (MRC) du projet FP6-ENSEMBLES, sont utilisées pour balayer une partie de la marge des incertitudes relatives aux changements climatiques et notamment celles inhérentes à la modélisation. Les changements futurs issus de ces MRC, compatibles dans l'ensemble avec ceux issus d'ARPEGE-Climat, optent dans la plupart des cas pour une réduction des cumuls pluviométriques de l'hiver accompagnée généralement d'une baisse du nombre d'événements de fortes précipitations et d'une augmentation du nombre maximal de jours consécutifs secs. L'examen, réalisé à la fois à l'aide du modèle ARPEGE-Climat et des MRC d'ENSEMBLES, de la possibilité d'utilisation d'une méthode de réduction d'échelle statistique basée sur les régimes de temps de l'Atlantique nord pour la déduction des changements futurs des précipitations locales, montre la déficience de ce type d'approche dans le cas de la pluviométrie hivernale marocaine. La méthode de correction par quantiles étendues aux régimes de temps de l'Atlantique nord et appliquée aux sorties d'ARPEGE-Climat confirme le signe des changements issus de ce modèles, malgré un effet légèrement modérateur de leurs amplitudes. L'évaluation des impacts potentiels sur l'hydrologie à l'aide du modèle hydrologique GR2M et des scénarios climatiques d'ARPEGE-Climat, montre une future réduction des débits mensuels au niveau du bassin versant de la Moulouya du fait de la concomitance de précipitations moins abondantes et d'une évapotranspiration potentielle accrue par l'augmentation de température. Enfin, une descente d'échelle dynamique réalisée à l'aide du modèle à aire limitée ALADIN-Climat à très haute résolution (12km) sur la moitié nord du pays permet de confirmer dans l'ensemble les projections issues d'ARPEGE-Climat à la fois en termes de moyennes et d'extrêmes. / In the context of climate change, it is important to improve climate information concerning countries that may be negatively impacted by global warming such as Morocco. Indeed, various studies of future projections, including IPCC ones, are mainly based on the outputs of low resolution climate models that do not allow accessing the regional and local scales. The first part of this work focuses on the study and analysis of observed climate evolution and trends in Morocco through a set of climate indices. Moroccan rainfall is characterized by a high interannual variability and more frequent droughts have occurred since the early 1980s. Furthermore, a clear change is shown in the distribution of precipitation during the period 1961-2008. It consists in a shift towards warmer and drier conditions. The assessment of future climate changes is done, firstly, using a variable resolution version of the global GCM ARPEGE-Climat with high resolution over Morocco (50km). The examination of this version capability shows the ability of the model to well reproduce the large scale circulation as well as the interannual variability of Moroccan rainfall despite an underestimation of its amount. A reduction of winter rainfall over the whole country is projected by the model for 2021-2050. In the region located west of the Atlas Mountains, the reduction could concern the wettest part of the year (ONDJFM). The changes in rainfall characteristics may also occur through a decrease in the number of wet days and the number of heavy precipitation events and by more persistent droughts. Furthermore, an increase of mean temperature is projected at annual and seasonal scales. The outputs of ten RCMs of the FP6-ENSEMBLES (ENSEMBLES) project are used to assess the uncertainties associated to future climate change. The changes issued from ARPEGE-Climat are in the range covered by the ten RCMs. Most of the models agreed on a reduction of winter precipitation associated with a decrease in the number of heavy precipitation events and an increase in the number of maximum consecutive dry days. The evaluation of a statistical downscaling approach that uses large scale fields such as North Atlantic weather regimes to construct local scenarios of future climate change shows the deficiency of this approach in the case of Moroccan winter precipitation. This result is obtained by both ARPEGE-Climat and the ENSEMBLES RCMs. The quantile-quantile correction method extended to weather regimes and applied to the outputs of ARPEGE-Climat confirms the sign of the changes despite a slight reduction of their amplitudes. The assessment of potential impacts on hydrology done using the hydrological model GR2M and the climate scenarios issued from ARPEGE-Climat shows a future reduction of the Moulouya watershed discharges. This is due to the combination of a rainfall decrease and an enhanced potential evapotranspiration induced by increasing temperature. Finally, a dynamical downscaling achieved using the limited area model ALADINClimat with very high resolution (12km) on the northern half of the country allows a further assessment of future climate changes and related uncertainties. The projections issued from ARPEGE-Climat are generally confirmed both in terms of average and of extremes
57

Variabilité intrasaisonnière de la mousson africaine : caractérisation et modélisation / Intraseasonal variability of the West african monsoon : characterization and modelling

Roehrig, Romain 19 November 2010 (has links)
La variabilité intrasaisonnière de la mousson d'Afrique de l'Ouest se caractérise par une alternance de phases sèches et humides, dont les impacts pe uvent être dramatiques sur les populations locales. Cette variabilité met en jeu un grand nombre d'échelles spatiales et temporelles, rendant difficile sa compréhension, sa modélisation et sa prévision. Cette thèse propose quelques éclairages sur ces différentes thématiques. La dépression thermique saharienne est un acteur majeur de la mousson africaine. La caractérisation de sa variabilité intrasaisonnière a permis de mettre en évidence, à l'échelle de 15 jours, l'existence d'interactions entre les latitudes moyennes et l'Afrique de l'Ouest. Lors de son passage au-dessus de l'Atlantique et la Méditerranée, un train d'ondes de Rossby module les ventilations de la dépression thermique, et donc sa structure. Les anomalies de circulation, de température et d'humidité, ainsi induites sur le Sahel, pourraient alors expliquer une partie des fluctuations intrasaisonnières de la convection, notamment celles qui naissent sur l'est du Sahel, et qui se propagent ensuite vers l'ouest. L'état moyen et la variabilité intrasaisonnière de la mousson africaine restent un défi pour les modèles de climat, même pour la dernière génération, qui a participé à l'exercice d'intercomparaison CMIP3. La variabilité à haute fréquence de la convection est un élément particulièrement difficile à modéliser. Toutefois, la meilleure prise en compte de facteurs inhibant le développement de la convection pourrait être une étape importante pour améliorer la modélisation de la mousson et la prévision de ses fluctuations intrasaisonnières / The intraseasonal variability of the West African Monsoon is associated with persistent dry and wet periods over the Sahel, whose consequences can be dramatic for local populations. Its understanding, modelling and forecast still pose a challenge to the scientific community, notably because it involves a large number of space and timescales. The present study elaborates a few answers to these issues. The Saharan heat low is one of the major actors of the African monsoon. The characterization of its intraseasonal variability revealed the existence of interaction between the tropics and the extratropics, at the 15-day timescale. As it propagates eastward above the Atlantic and the Mediterranean, a Rossby wave train modulates the heat low ventilations, and thus its structure. Anomalous circulation, as well as temperature and humidity anomalies, can be induced over the Sahel, and lead to intraseasonal modulations of convection, especially to those, which originate from the Eastern Sahel, and which, then, propagate westward. Current state-of-the-art (CMIP3) climate models still have significant problems and display a wide range of skill in simulating the West African monsoon mean state and intraseasonal variability. The high frequency variability is particularly difficult to capture. However, the account for processes, which inhibit convection development, may be expected to be an important step in the improvement of the monsoon modelling and the forecast of its intraseasonal fluctuations
58

Změny délek odobí s charakteristickými teplotami vzduchu / Changes of length of periods with characteristic temperatures

Černochová, Eva January 2006 (has links)
Title: Changes of lengths of periods with characteristic air temperatures Author: Eva Černochová Department: Department of Meteorology and Environment Protection Supervisor: doc. RNDr. Jaroslava Kalvová, CSc. Supervisor's e-mail address: jaroslava.kalvova@mff.cuni.cz Abstract: Lengths of periods with characteristic air temperatures were derived using two different methods (linear interpolation, robust locally weighted regression) for 10 stations in the Czech Republic and for output data of regional climate models HIRHAM and RCAO in 4 grid points. Averages for a forty-year period (1961-2000) and for a thirty-year period (1961-1990) were computed as well as averages for every decade. Considerable attention was also paid to the analysis of methods used in the research. Most stations showed lengthening of growing season and summer during the twentieth century. Decennary average length of growing season and summer shortened in the years 1971-1980. The comparison of output data of regional climate models HIRHAM and RCAO and measured station data showed that the thirty-year average lengths of growing season and summer estimated by the two models were reasonably accurate approximately half of all cases. The models' estimates were not accurate at all concerning decennary averages. Keywords: robust locally...
59

Estimativa de impacto de mudanças climáticas nos níveis do aquífero livre em zona de recarga do sistema Aquífero Guarani / Climate change impact assessment on unconfined aquifer levels in the Guarani Aquifer System outcrop zone

Melo, Davi de Carvalho Diniz 03 July 2013 (has links)
A exploração acelerada das águas subterrâneas pode acarretar em problemas de disponibilidade de água. Esse problema tende a ser acentuado devido as mudanças no clima previstas para as próximas décadas. Nesse contexto, este trabalho buscou avaliar os possíveis impactos das mudanças climáticas e do uso do solo sobre níveis de água subterrânea em zona de afloramento do Sistema Aquífero Guarani. Foram utilizadas simulações de Modelos de Circulação Global (MCG) como dados de entrada para um modelo transiente de fluxo hídrico subterrâneo, visando avaliar o comportamento dos nveis de água sob diferentes condições climáticas. Este modelo foi calibrado utilizando dados de níveis freáticos em seis poços localizados na bacia do Ribeirão da Onça (BRO). A partir de dados climáticos observados, estimou-se a recarga, usada como input no modelo matematico, em diversos tipos de cultura por meio do balanço hídrico. As maiores alterações nas médias pluviométricas mensais foram projetadas, pela maioria dos modelos climáticos, para ocorrer no perodo seco. No perodo chuvoso, as previsões indicaram que essas médias devem diminuir em torno de 50%. Quase 70% dos cenários climáticos geraram, no modelo transiente, variações dos nveis freáticos abaixo daqueles medidos no monitoramento entre 2004 e 2011. Em setores da área de estudo, o rebaixamento da superfície potenciométrica, simulada sob condições climáticas mais extremas previstas por alguns modelos, ultrapassou 10 m. Os cenários mais otimistas, embora tenham resultado em elevações dos níveis de água em mais metade da BRO, também geraram rebaixamentos de até 5 m. Os resultados reforçam a necessidade do contínuo monitoramento hidrogeológico, principalmente em áreas de recarga do SAG, e do desenvolvimento de outros trabalhos que quantiquem os impactos das mudanças climáticas, aplicando diferentes métodos de estimativa de recarga e downscaling. / The unsustainable use groundwater in many countries might cause water availability restrictions. Such issues are likely to worsen due to changes in climate, predicted for the incoming decades. In this context, the objective of this work was to assess possible climate and land use changes impacts on groundwater levels in the Guarani Aquifer System\'s (GAS) outcrop zone. Global Climate Models\' (GCM) outputs were used as inputs in a transient ux groundwater model. Thus, groundwater table uctuation could be evaluated under distinct climatic conditions. Six monitoring wells, located in the Ribeir~ao da Onca basin (ROB), provided water table measurements to calibrate the groundwater model. Using observed climatic data, a water budget method was applied to estimate recharge in dierent types of land uses. Statistically downscaled future climate scenarios were used as inputs in that same recharge model, which provided the inputs for SPA. Most of the GCMs used here predict temperature arises over 2°C. Major monthly rainfall mean changes are projected by the GCM great majority to take place in the dry season. During wet seasons, the predictions indicate those means might experience around 50% decrease. Water table variations, derived from the transient model under almost 70% of the climate scenarios, were below of those measured between 2004 and 2011. Few GCM predicted more extreme climate scenarios. In some regions of the study area and under these conditions, groundwater surface would decline more than 10 m. Although more optimistic scenarios resulted in an increase of groundwater levels in more than half of ROB, these would cause up to 5 m water table decline. The results reinforce the need for a permanent hydrogeological monitoring, mainly in the GAS recharge areas, along with the development of other climate change impacts assessment works using dierent downscaling and recharge estimates methods.
60

An Assessment Of The Simulation Of Monsoon And Inter Tropical Convergence Zone In Coupled Ocean-Atmosphere Models

Vidyunmala, V 10 1900 (has links)
Monsoons and Intertropical Convergence Zones (ITCZ) exhibit variability at various temporal and spatial scales. The temporal scale of variability encompasses scales from the intraseasonal through interannual to interdecadal time scales. Anthropogenic climate change can also have an impact on ITCZ and monsoons. Thus it is necessary to assess the ability of coupled ocean atmospheric models (commonly known as AOGCM) to simulate these aspects of variability of tropical climate. This has been studied with simulations from 20 AOGCMs and their AGCM from IPCCAR4 archive. In addition, we have used our own 100 year simulation with CCSM2 and also simulations with its AGCM viz. CAM2. Our analysis shows that most model have significant bias in tropical rainfall and SST. Most models underestimate SST except over a few regions such as the Eastern boundaries of Atlantic and Pacific Oceans. The AGCMs which are forced with observed SSTs have much higher annual mean rainfall as compared to AOGCMs. There is a strong correlation between error in shortwave reflectance at the top of the atmosphere and error in SST. The ability of coupled ocean-atmosphere models and their atmosphere-alone counterparts to simulate the seasonal cycle of rainfall over major monsoon regions and also over oceanic ITCZ. It is found that over the Indian monsoon region, most AGCMs overestimate the seasonal cycle while AOGCMs have a more realistic seasonal cycle. This inspite of the fact that most AOGCMs underestimate the SST over the Indian region. It is shown that this is related to errors in precipitable water-rainfall relationship in most models i.e. for a given amount of precipitable water, most models overestimate the rainfall. Thus lower SST reduces the precipitable water and hence the amount of rainfall is reduced. Therefore, the mutual cancellation of errors leads to a more realistic seasonal cycle in AOGCMs. The seasonal cycle over Africa was analysed with the help of a diagnostic model. Over Southern Africa, most models show simulate a less stable atmosphere and hence the rainfall is overestimated. A technique based on Continous Wavelet Transform in Space and Time (CWTST) has been modified to seperate northward and southward propagating modes of BSISO over the Indian and West Pacific regions. It was seen that over the Indian region, northward propagating modes were more prominent in comparison to southward modes. It was also found that the predominant spatial scale (of about 30o) did not show much interannual variability but the associated temporal scale showed significant variation. Both AOGCMs and AGCMs simulations were analysed to investigate the impact of coupling on intraseasonal activity. Most AOGCMs were able to simulate the predominant spatial scale but were unable to simulate the associated temporal scale correctly. These problems persisted with AGCMs also. It was also found that for AGCMs, there were some variations between ensemble members of the AGCMs. Comparing BSISO in increased GHG scenarios with present day simulations we found that in general, power in the spectrum increases. This could be related to higher mean precipitation that has been simulated by most AOGCMs when GHG are increased. The interannual variability in the tropics with special reference to Tropical Biennial Oscillation (TBO) and ENSO has been studied. The changes in these modes of variability due to anthropogenic climate change has also been assessed. We found that in most models over the Nino3.4 region, the mode of variation shifts from a near-four period (in pre-industrial simulations) to that of TBO mode in increased GHG (green house gas) scenario. This suggests that with increasing GHGs, ENSO quasi-periodicity might shift to about two years. It is also interesting to note that for observed rainfall, OLR and 850 hPa winds, the TBO mode has higher variance over the Eastern Indian Ocean, indicating that the TBO mode might be related to Indian Ocean Dipole Mode and EQUINOO (Equatorial Indian Ocean Oscillation).

Page generated in 0.0471 seconds