• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Génétique et architecture clonale des leucémies myélomonocytaires juvéniles sporadiques et syndromiques / Genetics and clonal architecture of Juvenile Myelomonocytic Leukemia

Caye-Eude, Aurélie 26 June 2018 (has links)
La LMMJ est un syndrome myéloprolifératif et myélodysplasique rare du jeune enfant, initiée par des mutations classiquement décrites comme mutuellement exclusives de RAS (NRAS, KRAS) ou de régulateurs de la voie RAS (PTPN11, NF1 ou CBL). Ces mutations, somatiques ou constitutionnelles, entraînent l’hyperactivation de cette voie de signalisation et une hypersensibilité spécifique au GM-CSF. La LMMJ est une hémopathie sévère dont le seul traitement est l’allogreffe de moelle osseuse. Cependant sa présentation et son évolution sont particulièrement hétérogènes puisqu’une transformation en leucémie aiguë myéloide survient chez un tiers des patients quand d’autres présentent des formes plus indolentes, voire des rémissions spontanées en l’absence de greffe. Cette hétérogénéité n’est que partiellement liée à la mutation initiatrice et pourrait s’expliquer par la présence de mutations additionnelles et/ou par une variabilité dans la cellule initiatrice de la leucémie, qui n’a jamais été précisément caractérisée.La caractérisation génétique de 118 LMMJ nous a permis de montrer que les anomalies génétiques additionnelles sont peu nombreuses dans les LMMJ sporadiques, et exceptionnelles dans les LMMJ syndromiques sauf en cas de neurofibromatose de type-1. Ces anomalies se concentrent sur deux grands systèmes, la voie RAS et le PRC2, et leur présence s’accompagne d’un pronostic défavorable (particulièrement en cas de mutations multiples de la voie RAS). L’absence d’anomalie additionnelle permet à l’inverse de distinguer un sous-groupe de patients qui présentent une forte probabilité de survie à long terme sans greffe et pour lesquels une soultion attentiste serait à privilégier. Une collaboration avec l’équipe de D Bonnet (Crick Institute) nous a ensuite permis d’établir un modèle murin de xénotransplantation dans des souris immunodéficientes de type NSG ou NSG-S et de montrer que la capacité de propagation de la leucémie est bien portée par la fraction souche, mais s’étend aussi chez certains patients à des fractions plus différenciées. Le profil génétique des 15 xénogreffes étudiées reproduit fidèlement l’architecture clonale des LMMJ natives, tant dans les souris NSG que NSG-S. L’architecture clonale des LMMJ est dans la majorité des cas compatible avec une acquisition linéaire des altérations, mais une architecture complexe est parfois observée, avec coexistence de clones distincts, dont les plus faiblement représentés sont susceptibles de devenir dominants lors de la rechute. Le séquençage de sous-populations isolées a montré que l’ensemble des mutations (initiatrice et additionnelles) est présent dès les fractions les plus immatures (HSC/MPP/MLP). Le séquençage de colonies obtenues par culture des progéniteurs en méthylcellulose révèle que les mutations coexistent dans les mêmes cellules, sans qu’il soit possible de hiérarchiser leur ordre de survenue, témoignant d’un avantage sélectif majeur de leur association dès la cellule souche. Au total, nos résultats remettent en cause le dogme de l’exclusivité mutuelle des mutations activant RAS dans les LMMJ, confirment le rôle central et initiateur de cette voie oncogénique dans la leucémogénèse et suggérent un effet-dose de l’activation de RAS, en particulier en cas de mutation de NRAS. La présence d’altérations multiples ciblant la voie RAS marque des LMMJ agressives et rapidement évolutives. La mise en évidence d’une fréquente dérégulation du PRC2 offre de nouvelles perspectives therapeutiques (comme l’utilisation des inhibiteurs de bromodomaine). La mise en place d’un modèle de souris xénotransplantée devrait de plus faciliter les études biologiques et la mise en place d’évaluations précliniques. / JMML is a rare myeloproliferative and myelodysplastic neoplasm of early childhood, initiated by mutations classically described as mutually exclusive of RAS (NRAS, KRAS) or RAS pathway regulators (PTPN11, NF1 or CBL). These mutations, either germline or somatically aquired, lead to an hyperactivation of the RAS signalling pathway and a to a specific hypersensitivity to GM-CSF. JMML is a severe hemopathy, and the only curative treatment is allogenic bone marrow transplantation. However, its presentation and evolution are particularly heterogeneous since transformation into acute myeloid leukaemia occurs in about one third of patients, when others present more indolent forms, or even spontaneous remissions in the absence of transplantation. This heterogeneity is only partially accounted for by the initiating mutation and could be related to the presence of additional mutations, or some variability in the leukemia initiating cell, which has never been precisely characterized so far.Establishing the genetic landscape of 118 LMMJ allowed us to show that additional genetic abnormalities are scarse in sporadic JMML and exceptional in syndromic JMML, except in the case of type-1 neurofibromatosis. These additional abnormalities mainly target two major biologic components, the RAS pathway and the PRC2, and their presence is associated with an unfavourable prognosis (particularly in the case of multiple mutations targeting the RAS pathway). On the other hand, the absence of any additional abnormality allows to delineate a subgroup of patients who have a high probability of long-term survival in the absence of bone marrow transplantation, and for whom a wait-and-see approach would be preferable. A collaboration with D. Bonnet’s group (Crick Institute) allowed us to establish a mouse model of xenotransplantation in immunodeficient NSG or NSG-S mice and to demonstrate that the leukemia propagating cell is present in the stem cell fractions (HSC, CD34+/CD38-…) but also extends in certain patients to more differentiated fractions, such as CMP. The genetic profile of xenografts established from 15 JMML faithfully reproduced the clonal architecture of the native leukemia, either in NSG or NSG-S mice. The clonal architecture of JMML is linear in the great majority of cases, with linear acquisition of alterations, but a complex architecture is sometimes observed, with coexistence of distinct clones, the weakest of which being susceptible to become dominant at relapse. Sequencing of sorted cell populations showed that all mutations (initiating and additional) are present in the most immature fractions (HSC/MPP/MLP). The sequencing of colonies obtained by culturing progenitors into methylcellulose revealed that mutations coexist in the same cells, their order of appearance being often impossible to determine, showing a major selective advantage of their association from the most immature compartment. In conclusion, our findings confirm the central role of RAS activation in JMML leukemogenesis. The identification of multiple alterations targeting the RAS pathway challenges the dogma of the mutual exclusivity of these mutations and defines a subset of aggressive and rapidly evolving JMML, suggesting a dose-effect of RAS activation, particularly in case with NRAS mutation. Recurrent deregulation of PRC2 in JMML may offer new therapeutic approaches, such as bromodomain inhibitors. The implementation of a xenotransplanted mouse model should also facilitate biological studies and the implementation of preclinical evaluations.
2

Etude de l'architecture clonale des leucémies aiguës myéloïdes. Application à la mesure de la maladie résiduelle / Clonal architecture of acute myeloid leukaemias and consequences for minimal residual disease evaluation

Hirsch, Pierre 28 January 2016 (has links)
Les leucémies aigues myéloïdes (LAM) dérivent de progéniteurs hématopoïétiques dans lesquels se sont accumulés des événements génétiques conduisant à leur transformation. En établissant la hiérarchie clonale de multiples lésions récurrentes, nous démontrons que les événements impliquant les régulateurs de l'épigénétique sont les premiers événements dans le clone. A l'inverse, les mutations régulant la prolifération se produisent tardivement. Les événements précoces sont quasi constamment détectables en rémission complète. Les clones qui persistent servent de réservoir pour les rechutes, avec une variation qui augmente avec la durée de la rémission. Après xénogreffe, les échantillons de patients porteurs de lésions épigénétiques sont capables de repopulation hématopoïétique, ce qui est la signature fonctionnelle des événements pré-leucémiques. Cette hiérarchie est observée chez la majorité des patients. Cependant dans 1/3 des cas, il n'est pas retrouvé d'événement épigénétique, et on observe notamment des prédispositions germinales aux LAM, ou des mutations acquises de TP53. Chez 3 patients avec des LAM de novo, les mutations de TP53 sont associées à des mutations de DNMT3A dans un même clone. Cela suggère que les mutations de DNMT3A et de TP53 sont complémentaires pour obtenir une dominance clonale pré leucémique. En conclusion, dans la majorité des LAM, des hiérarchie clonales récurrentes, initiées par des lésions pré-leucémiques variées vont promouvoir l'expansion ou la variation clonale, jusqu'à l'émergence de la maladie. Ces données sont essentielles pour le développement de nouvelles stratégies personnalisées de suivi de la maladie résiduelle. / Acute myeloid leukaemia (AML) emerge from haematopoietic stem/progenitor cells that acquiregenomic or chromosomal aberrations, some being considered as pre-leukemic lesions. Here, byestablishing the chronological hierarchy of multiple driver lesions in AML, we show that most eventsaffecting epigenetic regulators - DNMT3A, TET2, ASXL1 mutations, as well as MLL and chromosome20q rearrangements - are the first lesions in the clone. In contrast to late mutations involving signallingpathways such as FLT3 or RAS, these early lesions are frequently detectable in complete remissionsample. By studying late relapses, we show that persistent clones behave as long-term relapsereservoirs, and variegate increasingly with delay to relapse. Cells from patients with early epigeneticdefects can repopulate bone marrow of xenotransplanted NOD/SCID/IL-2Rgc-null (NSG) mice withleukemic or non leukemic engraftment, a functional signature of pre-leukemic events. This genetichierarchy is observed in most patients but in one third of them lesions in epigenetic regulators are notthe first events. Some of these patients have genetic predisposition, or somatic mutations in TP53. Inthree de novo AMLs, but not in three secondary or therapy-related AMLs, these TP53 mutations wereaccompanied by DNMT3A mutations in a unique clone. This suggests that DNMT3A mutations maycomplement TP53 mutations to generate a dominant pre-leukemic clone. We conclude that in mostAMLs recurrent genetic hierarchies, initiated by distinct pre-leukemic lesions, promote progressiveclonal expansion or variegation, leading to the development of a full blown disease. These data areessential for the development of new personalised strategies for MRD evaluation.
3

Paysage génomique de la leucémie aiguë lymphoblastique de l’enfant

Spinella, Jean-François 11 1900 (has links)
La leucémie aiguë lymphoblastique (LAL) est une maladie complexe à l’étiologie multifactorielle. Elle représente la forme la plus commune de cancer pédiatrique et malgré une augmentation significative du taux de survie des patients, près de 15% d’entre eux ne répondent pas aux traitements classiques et plus de 2/3 subissent les effets du traitement à long terme. Réduire ces chiffres passe par une meilleure compréhension des causes sous-jacentes de la LAL. À travers l’analyse des données de séquençage de nouvelle génération (SNG) de la cohorte QcALL du CHU Sainte-Justine, je me suis intéressé aux déterminants génomiques contribuant aux différents aspects de la LAL (prédispositions, développement/progression et rechutes). Dans un premier temps, j’ai développé un outil d’analyse (SNooPer) basé sur un algorithme d’apprentissage intégrant les données SNG normales et tumorales des patients, permettant d’identifier les mutations somatiques au sein de données à faible couverture (low-pass). Cet outil, couplé aux analyses prédictives in silico et aux validations fonctionnelles adéquates, nous a permis de caractériser les événements rares ou récurrents impliqués dans le processus leucémogène. En analysant les données de LALs pré-B, j’ai pu mettre en évidence une série de mutations drivers rares au niveau de gènes (ACD, DOT1L, HCFC1) qui n’avaient jamais été associés à la LAL. L’étude fonctionnelle de la mutation identifiée au niveau d’ACD, membre du complexe shelterin, a démontré qu’elle conduit à une réduction de l’apoptose et une augmentation de la taille des télomères. Outre l’intérêt de la découverte de ces nouveaux drivers, je souhaitais démontrer l’importance des mutations somatiques rares afin d'établir la spécificité interindividuelle, généralement sous-estimée, et d’identifier l’ensemble des fonctions cellulaires impliquées. Au cours de ces travaux, j'ai également mis en évidence de nouveaux évènements récurrents de la LAL à cellules T (LAL-T), en particulier au niveau de patients présentant un phénotype immature encore mal caractérisé. J'ai démontré l’influence d'une mutation dans le gène codant pour U2AF1, membre de la machinerie d’épissage (spliceosome), sur l’épissage de gènes d’intérêt et ainsi confirmer l’importance du dysfonctionnement de l’épissage dans le développement de la leucémie. J'ai également identifié deux suppresseurs de tumeurs portés par le chromosome X, MED12 et USP9X, qui n’avaient jamais été associés à la LAL-T auparavant et qui représentent un intérêt particulier étant donné le débalancement de l'incidence en fonction du sexe (ratio garçon:fille =1.22). Enfin, grâce à l’étude longitudinale de patients LAL-B ayant subi une ou plusieurs rechutes, j'ai analysé l'architecture et l'évolution clonales des tumeurs. J’ai ainsi identifié 2 profils évolutifs distincts gouvernant les rechutes précoces et tardives: d'un côté, une dynamique élevée alimentée par un dysfonctionnement des mécanismes de réparation de l'ADN et conduisant à l'émergence rapide de clones mieux adaptés – de l'autre, une dynamique réduite, quasi-inerte, suggérant l'échappement de cellules en dormance épargnée par la chimiothérapie. De manière générale, cette thèse a permis de contribuer à la caractérisation des déterminants génomiques qui constituent la variabilité inter- et intra-tumorale, participent au processus leucémogène et/ou aux mécanismes de résistance au traitement. Ces nouvelles connaissances contribueront à un raffinement de la stratification des patients et leur prise en charge personnalisée. / Acute lymphoblastic leukemia (ALL) is a complex disease with a multi-factorial etiology. It represents the most frequent pediatric cancer and despite a significant increase of survival rate, about 15% of the patients still do not respond to current treatment protocols and over 2/3 of survivors experience long-term treatment related side effects. To reduce these numbers, a better understanding of the underlying causes of ALL is needed. Through the analysis of next-generation sequencing (NGS) data obtained from the established Quebec cALL (QcALL) cohort of the Sainte-Justine hospital, I have been particularly concerned about the genomic determinants that contribute to different phases of ALL (predispositions, onset/progress and relapses). First, I developed an analysis tool (SNooPer) based on a machine learning algorithm integrating both normal and tumor NGS data of the patient to identify somatic mutations from low-pass sequencing. This tool, combined to in silico predictive analysis and to adequate functional validations, allowed us to characterize rare or recurrent events involved in the leukemogenesis process. Through the analysis of pre-B ALLs, I have been able to identify several rare driver genes which had never been associated to ALL before (ACD, DOT1L, HCFC1). The functional study of the identified mutation in ACD, a member of the shelterin complex, showed a concomitant lengthening of the telomeres and decreased apoptosis levels in leukemia cells. Besides the interest aroused by the discovery of these new drivers, I wanted to demonstrate the importance of low-frequency somatic events to establish the generally underestimated interindividual specificity and identify all cellular functions involved. During this work, I also identified new recurrent driver events in T-cell ALL (T-ALL), particularly among poorly characterized immature T-ALL patients. For example, I demonstrated the impact of a recurrent mutation in U2AF1, member of the spliceosome, on alternative splicing of cancer-relevant genes, further suggesting the importance of aberrant splicing in leukemogenesis. I also identified two new X-linked tumor suppressors, MED12 and USP9X, never associated to T-ALL before and obtained results supporting a potential role for these genes in the male-biased sex ratio observed in T-ALL (ratio male:female =1.22). Finally, through the longitudinal study of pre-B cALLs who suffered one or multiple relapses, I analyzed the clonal architecture and evolution of the tumors. I identified two distinct evolution patterns governing either early or late relapses: on one hand a highly dynamic pattern, sustained by a defect of DNA repair processes, illustrating the quick emergence of fitter clones - and on the other hand, a quasi-inert evolution pattern suggesting the escape from dormancy of neoplastic stem cells likely spared from initial cytoreductive therapy. Overall, this thesis contributed to the characterization of genomic determinants that constitute the inter- and intra-tumor variability, participate in leukemogenesis and/or in resistance mechanisms. This new knowledge will contribute to refine patient stratification and treatment.

Page generated in 0.09 seconds