• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Magneto-LC resonance Sensors for Industrial and Bioengineering Applications

Thiabgoh, Ongard 06 April 2018 (has links)
The scientific studies associated with material engineering and device miniaturization are the core concepts for future technology innovation. The exploring and tailoring of material properties of amorphous magnetic microwires, recently, have revealed remarkable high sensitive magnetic field sensitivity down to the picoTesla regime at room temperature. This superior magnetometer is highly promising for active sensing and real-time monitoring building block for modern industrial devices and healthcare applications. The low-field, high sensitivity regime of the GMI response over a wide frequency range (1 MHz - 1 GHz) in the Co-rich melt-extracted microwires was optimized through novel Joule annealing methods (single- and multi-step current annealing techniques). Optimization of current value through multi-step current annealing (MSA) from 20 mA to 100 mA for 10 minutes is the key to improving the GMI ratio, and its field sensitivity up to 760% and 925%/Oe at f ≈ 20 MHz. The respective GMI ratio and field sensitivity are 1.75 times and 17.92 times higher than those of the as-prepared counterpart. The employment of the MSA technique successfully enhances the surface domain structures of the Co-rich microwires. This alternative tailoring method is suitable for improving the GMI sensitivity for a small field detection. The high sensitive response of the GMI to a weak magnetic field is highly promising for biomedical sensing applications. Real-time monitoring of position, motion, and rotation of a non-stationary object is crucial for product packaging, conveying, tracking, and safety compliance in industrial applications. The effectiveness of current sensing technology is limited by sensing distance and messy environments. A new class of high-frequency GMI-based sensor was designed and fabricated using the optimal Co-rich microwire. The impedance spectrum from the optimal sensing element showed a high GMI ratio and high field sensitivity response at low magnetic fields. The GMI sensor based longitudinal effect was found to be more sensitive than the commercially available Gaussmeters. The practical utility of the high sensitivity of the miniaturized sensor at weak magnetic fields for far-off distance monitoring of position, speed and gear rotating was demonstrated. This GMI-based sensor is highly promising for real-time position detection, oscillatory motion monitoring, and predictive failure of a rotating gear for industrial applications. Monitoring the rate of respiration and its pattern is crucial to assessing an individual’s health or progression of an illness, creating a pressing need for fast, reliable and cost-effective monitors. A new sensor based on a magnetic coil, which is made of Co-rich melt-extracted microwire for the detection of small magnetic fields was fabricated. The 3 mm diameter coil is wound from a Co-rich magnetic microwire. Unlike some typical solenoids, the MMC is sensitive to small magnetic fields due to a significant change in impedance attributed to the high-frequency giant magneto-impedance (GMI) effect. An application of the MMC sensor for the detection of a position-varying source of a small magnetic field (~0.01 – 10 Oe) in real-time bio-mechanical movement monitoring in human was demonstrated. This newly developed MMC magneto-LC resonance technology is highly promising for active respiratory motion monitoring, eye movement detection and other biomedical field sensing applications.
2

On the Mechanisms behind the Tribological Performance of Stellites

Persson, Daniel H. E. January 2005 (has links)
This thesis reveals the tribological mechanisms behind the intrinsic low friction potential of the Co-based family of alloys called Stellites. Although being an established and important group of materials, a satisfactory explanation to why they exhibit low-friction properties under severe sliding conditions has not previously been found in the literature. The main part of this thesis is dedicated to the clarification of the tribological performance of Stellites in highly loaded sliding contact. The results should assist the development of Co-free alternatives, suitable for replacing Stellites in nuclear applications. Owing to their beneficial properties they are today the most commonly used material in the sealing surfaces on gate valves in the primary circuits of boiling water reactors (BWR). The underlying reason for the replacement in the nuclear applications is an undesired contribution to the background radiation level, originating from the Co in the Stellite surfaces. The Stellites mainly consist of Cr-rich carbides in a solid solution dominated by Co. The commonly used Stellite 6 and Stellite 21 were chosen as primary test materials and applied by laser cladding, providing a metallically bonded clad layer with a fine dendritic microstructure. By combining information from a series of dedicated tribological tests and modern high-resolution analysis instruments (e.g. SEM, XRD and TEM) available at the Ångström Laboratory at Uppsala University, the following conclusions can be made regarding the tribological performance of Stellites under high load sliding. Mechanisms. The (tested) Stellites form a thick deformation hardened layer, topped with a superficial easily sheared layer of hcp basal planes aligned parallel to the worn surface. The easy-shear layer is continually regenerated, replacing worn off material. Technical benefits. The Stellites offer low-friction properties thanks to their easily sheared surface layers. The risk of severe galling is also avoided by restricting shear and adhesive transfer to very thin superficial layers. In closed sliding contacts, self-generated protective layers formed by re-deposition of wear fragments are also offered.
3

Alliages base Cobalt en surfusion sous champ magnétique intense : propriétés magnétiques et comportement à la solidification / Magnetic Properties and Solidification Behavior of Undercooled Co Based Alloys Under High Magnetic Field

Wang, Jun 24 September 2012 (has links)
Ce travail est dédié à l'étude de l'effet des champs magnétiques sur les propriétés magnétiques et le comportement à la solidification d'alliages à base de Cobalt en surfusion sous champ magnétique intense. Les alliages à base Co sont d'excellents candidats pour obtenir une surfusion en dessous ou proche du point de Curie sous champ intense en raison du faible écart entre ce point de Curie et la température du liquidus. Dans cette étude, un dispositif haute température de surfusion intégrant une mesure magnétique a été construit dans un aimant supraconducteur, et est utilisé pour la mesure in situ de l'aimantation de liquides surfondus et pour l'étude du sur-refroidissement et de l'évolution de la microstructure de solidification en champ intense. Le cobalt liquide en surfusion est fortement magnétique sous champ, et son aimantation est même supérieure à celle du solide au chauffage à la même température. L'aimantation de l'alliage proche eutectique Co-B en surfusion dépend de la température de surchauffe, tandis que le Co-Sn en surfusion est toujours paramagnétique. La surfusion moyenne et l'étendue de la recalescence de différents métaux et alliages est affectée par un champ externe. En champ magnétique uniforme, la surfusion du Cuivre est amplifiée, tandis que la surfusion du Cobalt et de Co-Sn reste identique. Cependant, l'étendue de la recalescence du Cobalt et de Co-Sn est réduite, et l'effet est d'autant plus important pour des teneurs supérieures en Cobalt. Le champ magnétique promeut la précipitation de la phase dendritique a-Co et la formation d'eutectique anormal dans la microstructure des alliages Co-Sn surfondus. Les processus d'évolution de la microstructure sont affectés par le champ magnétique, et dépendent de l'intensité du champ et de la surfusion. Ce travail offre de nouveaux horizons dans l'étude des propriétés magnétiques d'alliages métalliques en forte surfusion et dans l'étude de la solidification hors équilibre sous champ magnétique intense. / This work is devoted to the investigation of the magnetic field effect on the magnetic properties and solidification behavior of undercooled Co based alloys in high magnetic field. Co based alloys are promising candidates to be undercooled below or approaching their Curie point in strong magnetic field due to their small temperature difference between liquid line and Curie point. In this dissertation, a high temperature undercooling facility with magnetization measurement system is built in a superconducting magnet, and is used for in situ measurement of the magnetization of the undercooled melts and study the undercoolability and solidification microstructure evolution in magnetic field. The deep undercooled Co melt is strongly magnetized in magnetic fields, and its magnetization is even larger than the magnetization of heated solid at the same temperature. The magnetization of undercooled Co-B near eutectic alloy is related with overheating temperature while the undercooled Co-Sn melt is always in paramagnetic state. Mean undercooling and recalescence extent of different metals and alloys are affected by external field. In uniform magnetic field, the undercooling of Cu is enhanced while the undercoolings of Co and Co-Sn keep constant. However, the recalescence extents of Co and Co-Sn alloys are reduced, and with the increasing Co content, the effect becomes larger. Magnetic field promotes the precipitation of αCo dendrite phase and the formation of anomalous eutectics in solidified microstructure of undercooled Co-Sn alloys. The microstructure evolution processes are affected by magnetic field depending on the field intensity and undercooling. This work opens a new way to investigate the magnetic properties of deeply undercooled metallic melts and non-equilibrium solidification in strong magnetic fields.
4

Ni ir Co pagrindo dangų plazminio purškimo tyrimas / Research of plasma sprayed Ni,Co- based coatings

Marcinkevičiūtė, Auksė 26 July 2012 (has links)
Baigiamajame magistro darbe nagrinėjamos plazminio purškimo Ni ir Co pagrindo dangų ant aliuminio substrato savybės. Atlikta terminio purškimo dangų, jų technologijų apžvalga ir analizė bei pateikta dangų tyrimo metodika. Atlikti šių dangų mikrostruktūros, porėtumo, adhezijos, mikrokietumo ir dangos tamprumo modulio tyrimai. Baigiamajame darbe sudaryta purkštinės dangos skaitinio modeliavimo metodika ir gauti rezultatai pateikti grafiškai. Išnagrinėjus praktinius ir skaitinius terminio purškimo dangų rezultatus, pateikiamos baigiamojo darbo išvados. Darbą sudaro 4 dalys: įvadas, literatūros šaltinių apžvalga ir analizė, Ni ir Co pagrindo plazminio purškimo dangų savybių ir mikrostruktūros eksperimentiniai tyrimai, purkštinės dangos skaitinio modeliavimo tyrimas, tyrimo rezultatai ir jų aptarimas, išvados, literatūros sąrašas. / In the final master thesis the plasma spraying of Ni and Co base coatings on aluminum substrate properties are analyzed. The review of thermal spray coatings technology and research methods are described. The research of microstructure, porosity, adhesion, microhardness and modulus of elasticity of the coatings were carried out. In the final master work numerical simulation of thermal spray coatings are described and results are presented graphically. The experimental and numerical results of thermal spray coatings were analysed and conclusions were given. Structure: introduction, literature review and analysis, experimental research of Ni and Co based plasma spray coating properties and microstructure, numerical simulation of thermal spray coating, results of the studies, conclusions, references.
5

Characterization of physico-chemical environment of Co-based multilayer mirrors working in the soft x-ray and EUV ranges / Caractérisation de l’environnement physico-chimique de miroirs multicouches à base de cobalt travaillant dans les domaines de l’extrême ultraviolet et des rayons X mous

Yuan, Yanyan 03 October 2014 (has links)
Dans ce travail, nous nous concentrons sur la caractérisation de l'environnement physico-chimique des éléments présents dans des multicouches à base de cobalt qui travaillent dans les domaines des rayons X mous et extrême ultra-violet (EUV). L'observation des modifications des interface des deux systèmes Co/Mo2C et Co/Mo2C/Y lors du recuit est important pour l'amélioration de leurs performance optique. Ils ont été étudiés en combinant des méthodes non destructives, spectroscopie d'émission des rayons X, résonance magnétique nucléaire, réflectométrie de rayons X et des méthodes destructrices, spectrrométrie de masse d'ions secondaires par temps de vol et la Microscopie électronique en transmission pour étudier leurs propriétés interfaciales. Ce travail vise non seulement à la conception et la fabrication de nouveaux éléments optiques pour faire face au développement des sources et des applications dans les demaines des rayons X mous et l'EUV, mais aussi à développer une méthodologie combinant des simulations et des expérimentations consacrée à l'analyse des interfaces dans structures multicouches afin d'améliorer leur propriétés optiques. / In this work, we focus on the characterization of physico-chemical environment of the element present in Co-based multilayers working in the soft x-ray and EUV ranges. The observation of interface changes of both systems Co/Mo2C and Co/Mo2C/Y upon annealing is important for improving their optical performance. They were studied by combining non-destructive methods, x-ray emission spectroscopy, nuclear magnetic resonance spectroscopy, x-ray reflectometry and destructive methods, time-of-flight secondary ions mass spectroscopy and transmission electron microscopy to investigate their interface properties. This work aims not only at designing and fabricating new optical elements to face the development of sources and applications in the EUV and soft x-ray ranges, but also at developing a methodology combining simulations and experiments devoted to the interface analysis in these multilayer structures in order to improve their optical properties.
6

Formation, structure and properties of ultrahigh-strength Co-Ta-B bulk metallic glasses

Wang, Ju 26 March 2021 (has links)
Co-based bulk metallic glasses (BMGs) are well known for their excellent mechanical properties with high fracture strength, hardness and elastic modulus. Since the first report of A. Inoue with co-workers in 2003 on Co43Fe20Ta5.5B31.5 BMG with fracture strength up to 5 GPa, a series of Co-based BMGs including Co-Fe-B-Si-Nb, Co-Fe-Cr-Mo-C-B-Er, Co-Ta-B systems have been developed. Co-Ta-B ternary BMGs, discovered recently, are characterized by even higher fracture strength of up to about 6 GPa. These BMGs with outstanding mechanical behavior are interesting for applications as advanced structural materials and coatings. Due to a relatively simple constitution (only three components), Co-Ta-B BMGs are very attractive for investigations of relationships between composition, structure, undercoolability, glass-forming ability, thermal and mechanical properties. However, there have been published just a few papers on Co-Ta-B BMGs focusing on the glass-forming ability in terms of the critical diameter and mechanical properties so far. In present work, a systematic study of the structure and properties of Co-Ta-B BMGs has been carried out on four intentionally chosen compositions  Co61Ta6B33, Co59Ta8B33, Co57Ta10B33 and Co53Ta10B37. Glass formation, thermal stability, crystallization kinetics upon isochronal and isothermal annealing, mechanical and magnetic properties were investigated. Co-Ta-B BMGs studied in this work are characterized by high thermal stability, ultrahigh fracture strength in compression, large Vickers hardness and high values of elastic constants. Increasing of B and Ta content is beneficial to the improvement of both thermal and mechanical properties. Based on the study of the short-range atomic order in Co57Ta10B33 BMG, Co-Ta, Co-B and B-B bonds are supposed to play an important role in the thermal and mechanical properties. A comprehensive picture on structure-composition-property relationship was established. In order to better understand the glass formation, non-equilibrium solidification of the undercooled alloys was investigated using electromagnetic levitation, high-energy X-ray diffraction and high-speed video observation. Three compositions with bulk glass-forming ability (Co61Ta8B31, Co59Ta8B33, Co55Ta8B37) were chosen to study the phase formation during non-equilibrium solidification. In addition, one ternary near-eutectic alloy Co64Ta5.5B30.5 and two binary alloys Co67B33 and Co63B37 with poor glass formation were comparably investigated using the same method. The phase formation, dendrite growth velocity and microstructure of the solidified samples were analyzed in detail as function of undercooling. The alloy composition, maximum undercooling and growth velocity were related closely with the glass-forming ability of the Co-Ta-B alloys studied.
7

Neuartige Co-Basislote zum Hochtemperaturlöten thermisch stark belasteter Bauteile

Uhlig, Thomas 22 May 2018 (has links)
In der vorliegenden Arbeit werden neuartige Co-Basislote entwickelt, welche zum Hochtemperaturlöten von Co-Basis-Superlegierungen eingesetzt werden können. Diese werden hinsichtlich ihres Schmelzverhaltens, ihrer Mikrostruktur und ihrer mechanischen Eigenschaften charakterisiert. Die wesentliche Herausforderung besteht in der Vermeidung von Sprödphasenbändern im Lötgut, welche die Eigenschaften der Verbindungen verschlechtern, auch bei großen Spaltbreiten. Hierzu wird ausgehend vom Stand der Wissenschaft und Technik wird ein Legierungskonzept erarbeitet und umgesetzt. Es werden Schmelztemperaturen im Bereich kommerzieller Co-Basislote erreicht ohne dass nachteilige Sprödphasenbänder gebildet werden. Bei den mit kommerziellen Loten besonders kritischen zu lötenden großen Spaltbreiten zeichnen sich die entwickelten Legierungen durch erhöhte Zugfestigkeit und Duktilität aus. Das Potenzial der Lote wird anhand von Zugversuchen bei geringen und großen Spaltbreiten aufgezeigt, deren Ergebnisse mit der Mikrostruktur und in-situ Analysen zum Rissfortschritt korreliert werden. / This thesis deals with the development of novel Co-based brazing fillers, which can be employed for brazing of Co-based superalloys. The developed filler alloys are characterized with regard to their microstructure and their mechanical properties. The main challenge is the prevention of brittle intermetallic phase seams inside the braze metal, especially at high gap width. These phase seams deteriorate the mechanical properties of the joints significantly. For this purpose a new alloying concept is investigated. The melting temperatures of the developed filler alloys are similar to commercially available Co based fillers. Detrimental intermetallic phase seams do not occur. At high gap width, the developed filler alloys exhibit superior mechanical properties in comparison to commercially available fillers. The capability of the developed filler alloys is demonstrated using monotonic tensile tests at low and high gap width at different test temperatures. The results are correlated with the microstructure and in-situ analyses of the mechanisms of crack growth.
8

Solid-Solution Strengthening and Suzuki Segregation in Co- and Ni-based Alloys

Dongsheng Wen (12463488) 29 April 2022 (has links)
<p>Co and Ni are two major elements in high temperature structural alloys that include superalloys for turbine engines and hard metals for cutting tools. The recent development of complex concentrated alloys (CCAs), loosely defined as alloys without a single principal element (e.g. CoNiFeMn), offers additional opportunities in designing new alloys through extensive composition and structure modifications. Within CCAs and Co- and Ni-based superalloys, solid-solution strengthening and stacking fault energy engineering are two of the most important strengthening mechanisms. While studied for decades, the potency and quantitative materials properties of these mechanisms remain elusive. </p> <p><br></p> <p>Solid-solution strengthening originates from stress field interactions between dislocations and solute of various species in the alloy. These stress fields can be engineered by composition modification in CCAs, and therefore a wide range of alloys with promising mechanical strength may be designed. This thesis initially reports on experimental and computational validation of newly developed theories for solid-solution strengthening in 3d transition metal (MnFeCoNi) alloys. The strengthening effects of Al, Ti, V, Cr, Cu and Mo as alloying elements are quantified by coupling the Labusch-type strengthening model and experimental measurements. With large atomic misfits with the base alloy, Al, Ti, Mo, and Cr present strong strengthening effects comparable to other Cantor alloys. </p> <p> </p> <p>Stacking fault energy engineering can enable novel deformation mechanisms and exceptional strength in face-centered cubic (FCC) materials such as austenitic TRIP/TWIP steels and CoNi-based superalloys exhibiting local phase transformation strengthening via Suzuki segregation. We employed first-principles calculations to investigate the Suzuki segregation and stacking fault energy of the FCC Co-Ni binary alloys at finite temperatures and concentrations. We quantitatively predicted the Co segregation in the innermost plane of the intrinsic stacking fault (ISF). We further quantified the decrease of stacking fault energy due to segregation.  </p> <p><br></p> <p>We further investigated the driving force of segregation and the origin of the segregation behaviors of 3d, 4d and 5d elements in the Co- and Ni-alloys. Using first-principles calculations, we calculated the ground-state solute-ISF interaction energies and revealed the trends across the periodic table. We discussed the relationships between the interaction energies and the local lattice distortions, charge density redistribution, density of states and local magnetization of the solutes. </p> <p><br></p> <p>Finally, this thesis reports on new methodologies to accelerate first-principles calculations utilizing active learning techniques, such as Bayesian optimization, to efficiently search for the ground-state energy line of the system with limited computational resources. Based on the expected improvement method, new acquisition strategies were developed and will be compared and presented. </p>

Page generated in 0.0305 seconds