• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • Tagged with
  • 12
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MODELING THE METHANE HYDRATE FORMATION IN AN AQUEOUS FILM SUBMITED TO STEADY COOLING

Avendaño-Gómez, Juan Ramón, García-Sánchez, Fernando, Vázquez Gurrola, Dynora 07 1900 (has links)
The aim of this work is to model the thermal evolution inside a hydrate forming system which is submitted to an imposed steady cooling. The study system is a cylindrical thin film of aqueous solution at 19 Mpa, the methane is the hydrate forming molecule and it is assumed that methane is homogeneously dissolved in the aqueous phase. The model in this work takes into account two factors involved in the hydrate crystallization: 1) the stochastic nature of crystallization that causes sub-cooling and 2) the heat source term due to the exothermic enthalpy of hydrate formation. The model equation is based on the resolution of the continuity equation in terms of a heat balance. The crystallization of the methane hydrate occurs at supercooling conditions (Tcryst < TF), besides, the heat released during crystallization interferes with the imposed condition of steady decrease of temperature around the system. Thus, the inclusion of the heat source term has to be considered in order to take into account the influence of crystallization. The rate of heat released during the crystallization is governed by the probability of nucleation J(T ). The results provided by the model equation subjected to boundary conditions allow depict the evolution of temperature in the dispersed phase. The most singular point in the temperature–time curve is the onset time of hydrate crystallization. Three time intervals characterize the temperature evolution during the steady cooling: (1) linear cooling, (2) hydrate formation with a release of heat, (3) a last interval of steady cooling.
2

MODELING THE METHANE HYDRATE FORMATION IN AN AQUEOUS FILM SUBMITED TO STEADY COOLING

Avendaño-Gómez, Juan Ramón, García-Sánchez, Fernando, Gurrola, Dynora Vázquez 07 1900 (has links)
The aim of this work is to model the thermal evolution inside a hydrate forming system which is submitted to an imposed steady cooling. The study system is a cylindrical thin film of aqueous solution at 19 Mpa, the methane is the hydrate forming molecule and it is assumed that methane is homogeneously dissolved in the aqueous phase. The model in this work takes into account two factors involved in the hydrate crystallization: 1) the stochastic nature of crystallization that causes sub-cooling and 2) the heat source term due to the exothermic enthalpy of hydrate formation. The model equation is based on the resolution of the continuity equation in terms of a heat balance. The crystallization of the methane hydrate occurs at supercooling conditions (Tcryst < TF), besides, the heat released during crystallization interferes with the imposed condition of steady decrease of temperature around the system. Thus, the inclusion of the heat source term has to be considered in order to take into account the influence of crystallization. The rate of heat released during the crystallization is governed by the probability of nucleation J(T ). The results provided by the model equation subjected to boundary conditions allow depict the evolution of temperature in the dispersed phase. The most singular point in the temperature–time curve is the onset time of hydrate crystallization. Three time intervals characterize the temperature evolution during the steady cooling: (1) linear cooling, (2) hydrate formation with a release of heat, (3) a last interval of steady cooling.
3

Equilibrium and metastable solidification in Ti-Al-Nb and Al-Ni systems

Shuleshova, Olga 01 June 2010 (has links)
The presented work reports on the solidification studies in two alloy systems: the niobium bearing γ-TiAl, relevant for the automotive and aero-engine applications, and aluminium rich Raney-Ni, precursor alloys for catalyses used in the chemical industry. The time-resolved observations of equilibrium liquid-solid phase transformations, as well as non-equilibrium solidification from the undercooled melt, are performed by combination of in situ structural studies using high-energy X-rays at a synchrotron source and the electromagnetic levitation technique. Containerless processing assured the contamination-free environment leading to high undercooling levels even at moderate cooling rates. For the critical part of the Ti-Al-Nb phase diagram an equilibrium involving the liquid phase is deduced from the phase transformations gathered on heating periods of levitation experiment. New experimental data on the partial liquidus and solidus surfaces are delivered as well as the information on the nature of the reactions along the univariant lines. These data provide a valuable contribution to the reassessment of the thermodynamic description. The primary phase selection as function of undercooling is studied in ternary Ti-Al-Nb alloys. The metastable formation of the cubic β phase within the primary solidification region of the hexagonal α phase is observed with increasing melt undercooling. Furthermore, the microstructure evolution of the β solidifying Ti-46Al-8Nb alloy discloses the transition to the thermal growth mode for ∆T>200−250 K, accompanied by complete solute trapping. Supplemented with the data on the solidification velocity determined as function of melt undercooling, this results are discussed within the local non-equilibrium model of the free dendrite growth. The in situ observations of the non-equilibrium solidification of the binary Al-Ni system give insight into multiple phase transformation sequence. The achieved undercooling levels up to 320 K for the aluminium alloys containing 18–31.5 at.% Ni did not alter the primary phase selection. However, during further cooling of L+Al3Ni2 semisolid samples the peritectic formation of a metastable decagonal quasicrystalline phase is observed providing a critical undercooling below the peritectic temperature of Al3Ni phase is reached. On further cooling the metastable phase subsequently transforms into the equilibrium Al3Ni. A similar solidification pathways are expected for the Raney-Ni alloys produced by gas atomisation, where the associated high cooling rates allowed to retain the metastable phase at room temperature.
4

Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition

Lazar, Paul January 2005 (has links)
Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film ("surface freezing"). Thus, the alkane melt wets its own solid only partially which is a quite rare phenomenon in nature. The thesis treats about how the alkane melt wets its own solid surface above and below the bulk melting temperature and about the corresponding melting and solidification processes.<br> Liquid alkane drops can be undercooled to few degrees below the bulk melting temperature without immediate solidification. This undercooling behaviour is quite frequent and theoretical quite well understood. In some cases, slightly undercooled drops start to build two-dimensional solid terraces without bulk solidification. The terraces grow radially from the liquid drops on the substrate surface. They consist of few molecular layers with the thickness multiple of all-trans length of the molecule. By analyzing the terrace growth process one can find that, both below and above the melting point, the entire substrate surface is covered with a thin film of mobile alkane molecules. The presence of this film explains how the solid terrace growth is feeded: the alkane molecules flow through it from the undercooled drops to the periphery of the terrace.<br> The study shows for the first time the coexistence of a molecularly thin film ("precursor") with partially wetting bulk phase. The formation and growth of the terraces is observed only in a small temperature interval in which the 2D nucleation of terraces is more likely than the bulk solidification. The nucleation mechanisms for 2D solidification are also analyzed in this work. More surprising is the terrace behaviour above bulk the melting temperature. The terraces can be slightly overheated before they melt. The melting does not occur all over the surface as a single event; instead small drops form at the terrace edge. Subsequently these drops move on the surface "eating" the solid terraces on their way. By this they grow in size leaving behind paths from were the material was collected. Both overheating and droplet movement can be explained by the fact that the alkane melt wets only partially its own solid. For the first time, these results explicitly confirm the supposed connection between the absence of overheating in solid and "surface melting": the solids usually start to melt without an energetic barrier from the surface at temperatures below the bulk melting point. Accordingly, the surface freezing of alkanes give rise of an energetic barrier which leads to overheating. / Sowohl Benetzung als auch Phasenübergänge spielen eine sehr wichtige Rolle im täglichen Leben. Molekular dünne Filme langkettiger Alkane an Festkörper/Gas-Grenzflächen (z. B. C30H62 an Silizium-Waferoberflächen) sind sehr gute Modellsysteme um die Wechselbeziehung zwischen Benetzungsverhalten und (Volumen-)Phasenübergängen zu untersuchen. In einem Temperaturbereich knapp oberhalb der Volumenschmelztemperatur benetzt die Alkanschmelze die Substratoberfläche nur partiell (Alkantropfen). In diesem Temperaturbereich ist die Substratoberfläche mit einer molekular dünnen, festkörperartig geordneten Alkanschicht bedeckt ("Oberflächengefrieren" ). Die Alkanschmelze benetzt also die eigene Festkörperoberfläche nur partiell, ein in der Natur ziemlich seltenes Phänomen. Die Dissertation beschäftigt sich damit wie die Alkanschmelze ihre eigene Festkörperoberfläche über und unter dem Volumenschmelzpunkt benetzt und mit den entsprechenden Vorgängen beim Schmelzen bzw. Erstarren. Flüssige Alkantropfen lassen sich einige Grad unter ihren Schmelzpunkt unterkühlen ohne sich sofort zu verfestigen. Dieses "Unterkühlungsverhalten" ist üblich und es ist theoretisch qualitativ gut verstanden. Allerdings beobachtet man bei den Alkanen bei leichter Unterkühlung statt einer eventuellen Volumenverfestigung oft die Ausbildung von zweidimensionalen Terrassen aus erstarrtem Alkanen. Die Terrassen wachsen auf der Substratoberfläche radial aus den flüssigen Tropfen. Sie bestehen aus wenigen Alkanlagen mit jeweils der Dicke einer Moleküllänge. Die Analyse der Terrassen-Wachstumsprozesse zeigt, dass die gesamte Substratoberfläche einschliesslich der Terrassen sowohl oberhalb als auch unterhalb der Volumenschmelztemperatur mit einer dünnen Schicht mobiler Alkanmoleküle bedeckt ist. Durch diese Schicht fliessen bei Unterkühlung die Alkane vom unterkühlten Tropfen zur Terrassenkante und liefern den Nachschub für deren Wachstum. Die Untersuchungen zeigen damit erstmalig die Koexistenz eines molekular dünnen Films ("Precursor") mit einer partiell benetzenden Volumenphase. Die Entstehung und das Wachstum der Terrassen wird nur in einem engen Temperaturfenster beobachtet in dem die Keimbildung zweidimensionaler Terrassen wahrscheinlicher ist als die dreidimensionale Volumenverfestigung. Auch dieses Keimbildungsverhalten wird in der Dissertation genauer analysiert. Noch erstaunlicher als das Terrassenwachstum, d. h. das Verfestigungsverhalten ist das Schmelzverhalten der Terrassen. Sie lassen sich bis zu einer gewissen Temperatur überhitzen bevor sie schmelzen! Weiterhin findet bei genügender Überhitzung das Schmelzen nicht gleichzeitig überall statt sondern es entstehen zuerst kleine Alkantropfen an den Terrassenrändern. Diese bewegen sich dann über die Substratoberfläche und "fressen" sich durch die festen Terrassen. Dabei wachsen sie weil sie das geschmolzene Material aufnehmen und hinterlassen eine alkanfreie Spur. Sowohl die Überhitzung als auch die Tropfenbewegung lassen sich damit erklären dass die flüssige Alkanschmelze ihren eigenen Festkörper nur partiell benetzt. Die Ergebnisse bestätigen erstmals explizit den seit vielen Jahrzehnten vermuteten Zusammenhang zwischen der üblicherweise nicht beobachtbaren Überhitzung von Festkörpern und Oberflächenschmelzen: Festkörper beginnen normalerweise ohne Energiebarriere von der Oberfläche an zu schmelzen. Entsprechend bildet das Oberflächengefrieren der Alkane eine Energiebarriere und erlaubt damit deren Überhitzen.
5

On the Nucleation and Inoculation of Metals

Magnusson, Lena January 2006 (has links)
Latent heat during recalesence and nucleation and post-recalesence temperature was analysed for refractory metals. An effect on latent heat was found by alloying the pure elements with other refractories. Latent heat was found to be 15-65% of tabulated values. Interface energy was evaluated from undercooling experiments. It was found that the dimensionless numbers β (σLs/ σLv) and α can be used to classify elements into distinctive groups and crystallographic structure. The phase diagrams for Al-Ti, Al-Ti-B and Al-Ti-C as well as inoculation were analysed. It was found that Al nucleates on Al3Ti which nucleates on TiB2. TiC was found to decompose into Al4C3 and Al3Ti. The inoculation of nodular cast iron with Mg, Ce; Ca and the formation of sulphides and oxides was analysed. The formation of new inclusions during the solidification as well as the formation of graphite is discussed. / QC 20100602
6

Equilibrium and metastable solidification in Ti-Al-Nb and Al-Ni systems

Shuleshova, Olga 28 June 2010 (has links) (PDF)
The presented work reports on the solidification studies in two alloy systems: the niobium bearing γ-TiAl, relevant for the automotive and aero-engine applications, and aluminium rich Raney-Ni, precursor alloys for catalyses used in the chemical industry. The time-resolved observations of equilibrium liquid-solid phase transformations, as well as non-equilibrium solidification from the undercooled melt, are performed by combination of in situ structural studies using high-energy X-rays at a synchrotron source and the electromagnetic levitation technique. Containerless processing assured the contamination-free environment leading to high undercooling levels even at moderate cooling rates. For the critical part of the Ti-Al-Nb phase diagram an equilibrium involving the liquid phase is deduced from the phase transformations gathered on heating periods of levitation experiment. New experimental data on the partial liquidus and solidus surfaces are delivered as well as the information on the nature of the reactions along the univariant lines. These data provide a valuable contribution to the reassessment of the thermodynamic description. The primary phase selection as function of undercooling is studied in ternary Ti-Al-Nb alloys. The metastable formation of the cubic β phase within the primary solidification region of the hexagonal α phase is observed with increasing melt undercooling. Furthermore, the microstructure evolution of the β solidifying Ti-46Al-8Nb alloy discloses the transition to the thermal growth mode for ∆T>200−250 K, accompanied by complete solute trapping. Supplemented with the data on the solidification velocity determined as function of melt undercooling, this results are discussed within the local non-equilibrium model of the free dendrite growth. The in situ observations of the non-equilibrium solidification of the binary Al-Ni system give insight into multiple phase transformation sequence. The achieved undercooling levels up to 320 K for the aluminium alloys containing 18–31.5 at.% Ni did not alter the primary phase selection. However, during further cooling of L+Al3Ni2 semisolid samples the peritectic formation of a metastable decagonal quasicrystalline phase is observed providing a critical undercooling below the peritectic temperature of Al3Ni phase is reached. On further cooling the metastable phase subsequently transforms into the equilibrium Al3Ni. A similar solidification pathways are expected for the Raney-Ni alloys produced by gas atomisation, where the associated high cooling rates allowed to retain the metastable phase at room temperature.
7

Alliages base Cobalt en surfusion sous champ magnétique intense : propriétés magnétiques et comportement à la solidification / Magnetic Properties and Solidification Behavior of Undercooled Co Based Alloys Under High Magnetic Field

Wang, Jun 24 September 2012 (has links)
Ce travail est dédié à l'étude de l'effet des champs magnétiques sur les propriétés magnétiques et le comportement à la solidification d'alliages à base de Cobalt en surfusion sous champ magnétique intense. Les alliages à base Co sont d'excellents candidats pour obtenir une surfusion en dessous ou proche du point de Curie sous champ intense en raison du faible écart entre ce point de Curie et la température du liquidus. Dans cette étude, un dispositif haute température de surfusion intégrant une mesure magnétique a été construit dans un aimant supraconducteur, et est utilisé pour la mesure in situ de l'aimantation de liquides surfondus et pour l'étude du sur-refroidissement et de l'évolution de la microstructure de solidification en champ intense. Le cobalt liquide en surfusion est fortement magnétique sous champ, et son aimantation est même supérieure à celle du solide au chauffage à la même température. L'aimantation de l'alliage proche eutectique Co-B en surfusion dépend de la température de surchauffe, tandis que le Co-Sn en surfusion est toujours paramagnétique. La surfusion moyenne et l'étendue de la recalescence de différents métaux et alliages est affectée par un champ externe. En champ magnétique uniforme, la surfusion du Cuivre est amplifiée, tandis que la surfusion du Cobalt et de Co-Sn reste identique. Cependant, l'étendue de la recalescence du Cobalt et de Co-Sn est réduite, et l'effet est d'autant plus important pour des teneurs supérieures en Cobalt. Le champ magnétique promeut la précipitation de la phase dendritique a-Co et la formation d'eutectique anormal dans la microstructure des alliages Co-Sn surfondus. Les processus d'évolution de la microstructure sont affectés par le champ magnétique, et dépendent de l'intensité du champ et de la surfusion. Ce travail offre de nouveaux horizons dans l'étude des propriétés magnétiques d'alliages métalliques en forte surfusion et dans l'étude de la solidification hors équilibre sous champ magnétique intense. / This work is devoted to the investigation of the magnetic field effect on the magnetic properties and solidification behavior of undercooled Co based alloys in high magnetic field. Co based alloys are promising candidates to be undercooled below or approaching their Curie point in strong magnetic field due to their small temperature difference between liquid line and Curie point. In this dissertation, a high temperature undercooling facility with magnetization measurement system is built in a superconducting magnet, and is used for in situ measurement of the magnetization of the undercooled melts and study the undercoolability and solidification microstructure evolution in magnetic field. The deep undercooled Co melt is strongly magnetized in magnetic fields, and its magnetization is even larger than the magnetization of heated solid at the same temperature. The magnetization of undercooled Co-B near eutectic alloy is related with overheating temperature while the undercooled Co-Sn melt is always in paramagnetic state. Mean undercooling and recalescence extent of different metals and alloys are affected by external field. In uniform magnetic field, the undercooling of Cu is enhanced while the undercoolings of Co and Co-Sn keep constant. However, the recalescence extents of Co and Co-Sn alloys are reduced, and with the increasing Co content, the effect becomes larger. Magnetic field promotes the precipitation of αCo dendrite phase and the formation of anomalous eutectics in solidified microstructure of undercooled Co-Sn alloys. The microstructure evolution processes are affected by magnetic field depending on the field intensity and undercooling. This work opens a new way to investigate the magnetic properties of deeply undercooled metallic melts and non-equilibrium solidification in strong magnetic fields.
8

Non-equilibrium solidification of high-entropy alloys monitored in situ by X-ray diffraction and high-speed video

Fernandes Andreoli, Angelo 07 February 2022 (has links)
High-entropy alloys (HEAs) have attracted significant interest in the materials science community over the last 15 years. At the first moment, what caught the attention was the fact that these alloys tend to form solid solutions at room temperature, despite being composed of multiple elements in equiatomic or near-equiatomic concentrations. It was initially concluded that the configurational entropy plays a key role in the stabilization of the solid solutions. Later studies revealed the importance of lattice strain enthalpies, enthalpies of mixing, structural mismatch of constituents, and kinetics in phase formation/stability. The study presented in this thesis was branched into three major parts, all related to understanding phase formation, stability, or metastability in this class of alloys. The first part deals with developing an empirical method to predict single-phase solid solution formation in multi-principal element alloys. The second, which makes the core of this thesis, are non-equilibrium solidification studies of CrFeNi and CoCrNi medium-entropy alloys, and CoCrFeNi, Al0.3CoCrFeNi, and NbTiVZr high-entropy alloys. The last part is devoted to understanding the thermophysical properties of CrFeNi, CoCrNi, and CoCrFeNi medium- and high-entropy alloys. An empirical approach, based on the theoretical elastic-strain energy, has been developed to predict the phase formation and its stability for complex concentrated alloys. The conclusiveness of this approach is compared with the traditional empirical rules based on the atomic-size mismatch, enthalpy of mixing, and valence-electron concentration for a database of 235 alloys. The proposed “elastic-strain energy vs. valence-electron concentration” criterion shows an improved ability to distinguish between single-phase solid solutions, mixtures of solid solutions, and intermetallic phases when compared to the available empirical rules used to date. The criterion is especially strong for alloys that precipitate the μ phase. The elastic-strain-energy parameter can be combined with other known parameters, such as those noted above, to establish new criteria which can help in designing novel complex concentrated alloys with the on-demand combination of mechanical properties. The solidification behavior of the CoCrFeNi high-entropy alloy and the ternary CrFeNi and CoCrNi medium-entropy suballoys has been studied in situ using high-speed video-camera and synchrotron X-ray diffraction (XRD) on electromagnetically levitated samples at Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) and German Synchrotron DESY, Hamburg. In all alloys, the formation of a primary metastable body-centered cubic bcc phase was observed if the melt was sufficiently undercooled. The delay time for the onset of the nucleation of the stable face-centered cubic fcc phase, occurring within bcc crystals, is inversely proportional to the melt undercooling. The experimental findings agree with the stable and metastable phase equilibria for the (CoCrNi)-Fe section. Crystal-growth velocities for the CrFeNi, CoCrNi, and CoCrFeNi medium- and high-entropy alloys, extracted from the high-speed video sequences in the present study, are comparable to the literature data for Fe-rich Fe-Ni and Fe-Cr-Ni alloys, evidencing the same crystallization kinetics. The effect of melt undercooling on the microstructure of solidified samples is analyzed and discussed in the thesis. To understand the effect of Al addition on the non-equilibrium solidification behavior of the equiatomic CoCrFeNi alloy, the Al0.3CoCrFeNi HEA has been studied. While the quaternary alloy melt could be significantly undercooled, this was not possible in the five-component alloy. Therefore, the investigations on phase formation, crystal growth, and microstructural evolution were confined to the low undercooling regime. In situ XRD measurements revealed that the liquid crystallized into a fcc single-phase solid solution at this undercooling level. However, ex situ XRD revealed the precipitation of the ordered L12 phase for a sample solidified with ΔT = 30 K. Crystal growth velocities are shown to be smaller than in the CoCrFeNi, CrFeNi, and CoCrNi alloys; nonetheless, they are in the same order of magnitude. Spontaneous grain refinement, without the formation of crystal twins, is observed at low undercooling of ΔT = 70 K, which could be explained by the dendrite tip radius dependence on melt undercooling. In situ studies of the equiatomic NbTiVZr refractory high-entropy alloys revealed the effect of processing conditions on the high-temperature phase formation. When the melt was undercooled over 80 K, it crystallized as a bcc single-phase solid solution despite solute partitioning between the dendritic and interdendritic regions. When the sample was solidified from the semisolid state, it resulted in the formation of two additional bcc phases at the interdendritic regions. The crystal growth velocity, as estimated from the high-speed videos, showed pronounced sluggish kinetics: it is 1 to 2 orders of magnitude smaller compared to literature data of other medium and high-entropy alloys. The study of the linear expansion coefficient α and heat capacity at constant pressure 𝐶𝑝 of the equiatomic CoCrFeNi and the medium-entropy CrFeNi and CoCrNi alloys revealed an anomalous behavior with S-shaped curves in the temperature range of 700 – 950 K. The anomalous behavior is shown to be reversible as it occurred during the first and second heating. However, a minimum is only observed on the first heating, while in the second heating a sudden increase of both the α and 𝐶𝑝 occurs at the temperature of the onset of the minima in the first heating. Magnetic moment measurements as a function of temperature showed that the observed anomaly is not associated with the Curie temperature. Consideration of the structural and microstructural evaluation discards a first-order phase transformation or recrystallization as probable causes, at least for the CoCrFeNi and CoCrNi alloys. Based on literature evidence, the anomalies in the temperature dependences of the linear expansion coefficient and heat capacity are believed to be caused by a chemical short-range order transition known as the K-state effect. However, to reveal the exact nature of this phenomenon, further experimental and theoretical studies are required, which is outside the frame of the present work.:Abstract ....................................................................................................................... I Kurzfassung .............................................................................................................. IV Chapter 1: Motivation and Fundamentals .................................................................. 1 1.1 Introduction .......................................................................................................... 1 1.2 The high-entropy alloy (HEA) design concept ...................................................... 4 1.3 Empirical rules of phase formation for HEAs ....................................................... 6 1.4 Calculation of phase diagrams of HEAs ............................................................. 18 1.5 The core effects of HEAs ................................................................................... 20 1.5.1 Lattice distortion .............................................................................................. 20 1.5.2 Sluggish diffusion ............................................................................................ 22 1.5.3 Cocktail effect................................................................................................... 23 1.6 Mechanical properties ........................................................................................ 24 1.6.1 Lightweight high-entropy alloys ....................................................................... 24 1.6.2 Overcoming the strength-ductility tradeoff ...................................................... 26 1.6.3 Cryogenic high-entropy alloys ......................................................................... 28 1.6.4 Refractory high-entropy alloys ........................................................................ 30 1.7 Functional properties .......................................................................................... 33 1.7.1 Soft magnetic properties ................................................................................. 33 1.7.2 Magnetocaloric properties ............................................................................... 35 1.7.3 Hydrogen storage ............................................................................................ 36 Chapter 2: Experimental .......................................................................................... 38 2.1 Sample preparation ............................................................................................ 38 2.2 Electromagnetic levitation .................................................................................. 40 2.3 In situ X-ray diffraction ........................................................................................ 43 2.4 Microstructural and structural analysis ............................................................... 44 2.5 Thermal analysis ................................................................................................ 45 2.6 Dilatometry ......................................................................................................... 45 2.7 Magnetic moment ............................................................................................... 46 2.8 Heat treatment ................................................................................................... 46 Chapter 3: In situ study of non-equilibrium solidification of CoCrFeNi high-entropy alloy and CrFeNi and CoCrNi ternary suballoys ...................................................... 47 3.1 Introduction ........................................................................................................ 47 3.2 Results ............................................................................................................... 48 3.2.1 In situ synchrotron X-ray diffraction ................................................................. 48 3.2.2 High-speed video imaging ............................................................................... 52 3.2.3 Microstructure of the solidified samples .......................................................... 62 3.3 Discussion .......................................................................................................... 64 3.3.1 bcc-fcc nucleation and growth competition ..................................................... 64 3.3.2. Crystal growth kinetics ................................................................................... 68 3.3.3. Microstructural evolution ................................................................................ 70 Chapter 4: The effect of Al addition to the CoCrFeNi alloy on the non-equilibrium solidification behaviour.............................................................................................. 72 4.1 Introduction ........................................................................................................ 72 4.2 Results and Discussion ...................................................................................... 73 Chapter 5: Non-equilibrium solidification of the NbTiVZr refractory high-entropy alloy ................................................................................................................................. 84 5.1 Introduction ........................................................................................................ 84 5.2 Results ............................................................................................................... 85 5.2.1 In situ synchrotron X-ray diffraction ................................................................. 85 5.2.2 Room temperature synchrotron X-ray diffraction ............................................ 88 5.2.3 High-speed video imaging ............................................................................... 89 5.2.4 Microstructure and structure analysis ............................................................. 91 5.3 Discussion .......................................................................................................... 94 5.3.1 Phase formation upon solidification ................................................................ 94 5.3.2 Crystal growth kinetics .................................................................................... 98 5.3.3 Structural and microstructural features............................................................ 99 Chapter 6: Solid-state thermophysical properties of CrFeNi, CoCrNi, and CoCrFeNi medium- and high-entropy alloys ........................................................................... 101 6.1 Introduction ...................................................................................................... 101 6.2 Results ............................................................................................................. 102 6.3 Discussion ........................................................................................................ 106 6.3.1 Thermophysical properties ............................................................................ 106 6.3.2 Short-range order in medium- and high-entropy alloys ................................. 109 Chapter 7: Summary ............................................................................................... 111 7.1 Empirical rule of phase formation of complex concentrated alloys ................... 111 7.2 Non-equilibrium solidification of medium- and high-entropy alloys ................... 111 7.3 Thermophysical properties of the medium- and high-entropy alloys ................ 113 Chapter 8: Outlook ................................................................................................. 115 Appendix 1 .............................................................................................................. 117 Appendix 2 ............................................................................................................. 123 Appendix 3 ............................................................................................................. 133 Appendix 4 ............................................................................................................. 134 References.............................................................................................................. 140 Acknowledgments .................................................................................................. 164 List of publications .................................................................................................. 166 Erklärung ......................................................................................................................... 167
9

In situ characterization by X-ray synchrotron imaging of the solidification of silicon for the photovoltaic applications : control of the grain structure and interaction with the defects and the impurities / Caractérisation in situ par imagerie X synchrotron de la solidification du silicium pour les applications photovoltaïques : contôle de la structure de grains et interactions avec les défauts et les impuretés

Riberi-Béridot, Thècle 22 November 2017 (has links)
Au cours de cette thèse, nous avons étudié in situ la solidification du silicium à l’aide de l'imagerie X-synchrotron. Les deux techniques utilisées lors de la solidification sont la radiographie et la diffraction de Bragg, elles permettent de caractériser: la dynamique des mécanismes de croissance, la cinétique de croissance, la nucléation et la compétition de grains, la déformation du réseau cristallin et les champs de contraintes liés aux dislocations. Ces observations sont combinées avec des caractérisations ex situ pour étudier l'orientation cristallographique, les déformations du réseau cristallin ainsi que les concentrations d'impuretés légères telles que le carbone et l'oxygène.La complémentarité de ces techniques permet d'étudier et de mieux comprendre : les phénomènes physiques liés à la formation de la structure de grain finale. Les résultats concernant la cinétique de croissance de l'interface solide-liquide et des facettes {111}, l'établissement de la structure de grain, l'importance du maclage, l'effet des impuretés légères, le champ de contrainte lié à la croissance et la compétition de grains et les dislocations sont discutés dans le manuscrit. / During this thesis, we studied in situ the solidification of silicon with X-synchrotron imaging. The two techniques used during solidification are radiography and Bragg diffraction and they allow characterizing: dynamic growth mechanisms, growth kinetics, grain nucleation and competition, lattice deformation and dislocation related strain fields. These observations are combined with ex situ characterizations to study the crystallographic orientation, the deformations of the crystal lattice as well as the concentrations of light impurities such as carbon and oxygen. The complementarity of these techniques makes it possible to study and to better understand: the physical phenomena related to the formation of the final grain structure. Results concerning the growth kinetics of the solid-liquid interface and of the {111} facets, the establishment of the grain structure, the importance of twinning, the effect of light impurities, the strain field related to growth and grain competition and dislocations are discussed in the manuscript.
10

Modélisation du stockage de chaleur par changement de phase d'alliages à composition binaire soumis à un refroidissement contrôlé / Thermal storage modeling in binary alloy phase change materials submitted to a controlled cooling rate

Moreno Reyna, Abraham 09 November 2018 (has links)
La thèse est centrée sur la modélisation de la physique du comportement d’un alliage binaire et l’implémentation du meilleur modèle mathématique pour simuler le changement de phase liquide solide en tenant compte de la vitesse de refroidissement, la vitesse de solidification, la ségrégation, la convection naturelle et la surfusion afin d’optimiser la capacité de stockage de chaleur d'un tel matériau. Dans le présent travail, les températures pour lesquelles le changement de phase s'opère sont estimées grâce aux diagrammes des phases et la méthodologie CALPHAD qui retraduisent les différentes phases d'un alliage binaire, y compris la transformation isotherme. Pour cela, la minimisation de l'énergie de Gibbs est résolue dans un code de calcul développé à cette occasion et aboutit à l'identification des phases stables du matériau. Pour un intervalle de température souhaite le code permet d'estimer rapidement la décharge de chaleur pour la composition de l'alliage sélectionné en équilibre ou hors équilibre. Dans la méthode proposée, la vitesse de refroidissement du système permet de calculer la vitesse de solidification. Puis,celle-ci établit la relation entre la cinétique globale et la macrostructure. Basé sur le modèle de non-équilibre local, qui dépend de la variation du coefficient de partition, le degré de surfusion est prédit à partir de la vitesse de refroidissement appliquée. Une étude bibliographique a été réalisée pour amener une comparaison numérique et assurer la capacité de notre méthode à reproduire le changement de phase, en incluant des phénomènes spécifiques tels que la surfusion et la recalescence. / Latent Heat Thermal Energy Storage (LHTES) shows high storage density compared to sensible thermal systems. For high temperature applications, the use of alloys as phase change materials presents many advantages. Principally, varying alloy composition allows controlling the storage\discharge of thermal energy through an expected temperature range (defined by the heat source), and the high thermal conductivity givessuitable heat transfer properties to the system that receives/supplies the energy. However, some systems need a specific temperature range to correctly operate. In such conditions, subcooling (also known as undercooling) and segregation are undesirable phenomena in alloys when they are used as PCM. In thepresent work, we propose a method to predict the latent heat release during phase transformation of a binaryalloy submitted to a controlled cooling rate, including subcooling, segregation and variation of composition.This thesis describes the physical models that apply when heat is released from such a material. We takeinto consideration the cooling rate applied to the PCM, the solidification velocity, convective phenomena,melting temperature and subcooling. In the present work, phase diagrams and the CALPHAD methodologyare used to determine the temperature range for phase change (or constant temperature value for isothermal transformation) by minimizing the Gibbs equilibrium energy. The Gibbs free energy minimization has been implemented in a homemade numerical code. The material can be screened with different compositions for equilibrium or off-equilibrium solidification allowing quick selection of the optimal material for the specific heatsource. In the proposed method, the solidification velocity is obtained from the cooling rate. Then, variationin microstructure is driven by the solidification velocity using the local non-equilibrium diffusion model. Based on the local nonequilibrium model that depends on the partition coefficient variation, the subcooling degree, wich is derived from the applied cooling rate is predicted. A bibliographic study has been carried out and anumerical comparison has been undertaken to ensure the capacity of our code to reproduce the phase change of various materials that include phenomena such as subcooling and recalescence. The results highlight that the cooling rate is one of the most important parameters in the performance of the thermal storage, having a large effect on segregation and subcooling degree. Moreover, we show the influence ofpartition coefficient on the time evolution of solid fraction, considering a constant or a composition-dependent value. We can conclude that the latent heat release can be correctly predicted provided that the method correctly predicts the phase diagram and the variable partition coefficient. This work helps to accelerate the design and development of thermal storage systems and lays the foundation to continue exploring other kinds of materials (e.g. paraffins).

Page generated in 0.0861 seconds