• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Triboactive Component Coatings : Tribological Testing and Microanalysis of Low-Friction Tribofilms

Gustavsson, Fredrik January 2013 (has links)
Coatings are often used on critical components in machines and engines to reduce wear and to provide low friction in order to reduce energy losses and the environmental impact. A triboactive coating not only provides this desired performance, it also actively maintains the low friction by a structural or chemical change in a very thin top layer of these already micrometer thin coatings. This so-called tribofilm is often 5-50 nm thick and can be formed either from the coating itself or by a reaction with the counter surface or the surrounding atmosphere, i.e. gas, fuel, oil, etc. The tribofilm will maintain the wanted performance for as long as the system is not chemically disturbed. This thesis provides a detailed overview of the functionality of triboactive low-friction coatings, in many different systems. The majority of the tribofilms discussed, formed in very different environments, are built up by tungsten disulfide (WS2), which is a material similar to graphite, with a lamellar structure where strongly bonded atomic planes may slip over each other almost without resistance. The major difference is that WS2 is an intrinsically triboactive material, while graphite is not. However, graphite and other carbon-based materials can be made triboactive in certain atmospheres or by addition of other elements, such as hydrogen. The remarkable affinity and driving force to form such WS2 low-friction tribofilms, regardless of the initial states of the sulfur and tungsten, and even when the forming elements are present only at ppm levels, is a recurrent observation in the thesis. Addition of an alloying element to sputtered coatings of WS2 can improve its mechanical and frictional properties significantly. Several promising attempts have been made to find good candidates, out of which a few important ones are investigated in this thesis. Their achievable potential in friction reductions is demonstrated. By reducing friction, energy losses can be avoided, which also results in lower particle and exhaust emissions, which directly reduces the environmental impact. Triboactive coatings are shown to be a promising route to significantly improve tribological applications and allow more environmental friendly and energy efficient vehicles.
2

Self Lubrication on the Atomic Scale : Design, Synthesis and Evaluation of Coatings

Lindquist, Mattias January 2008 (has links)
In this thesis a new design concept of tribologically active coatings aimed for low friction applications, have been explored. Materials modeled by ab initio DFT calculations were realized through deposition of carbide and nanocomposite coatings by DC-magnetron sputtering. The design concept employs destabilization of a carbide material by alloying with a weak carbide-forming element, which refines the structure into a nanocomposite. The destabilization creates a driving force for superficial ejection of carbon in a tribological contact, forming a lubricious graphitic carbon layer. The otherwise hard material limits the real contact area and the transformed layer accounts for low shear resistance. Hence, the ideal situation for low friction is provided by formation of an easily sheared thin surface layer on a hard material. TiAlC was chosen as a model system for the theoretical modeling as well as for the depositions. The elemental composition, microstructure and mechanical properties of the coatings were characterized to relate the inherent properties to the experimentally achieved tribological response. As predicted by theory, TiAlC coatings were shown to provide self-lubrication on the atomic scale by giving low friction through a tribologically induced surface restructuring. It was shown possible to reduce the friction coefficient from 0.35 for TiC to 0.05 by addition of Al. Alloying with Al also proved to be a potent method in tailoring residual stresses from high and often detrimental levels to acceptable levels, with no significant reduction in either hardness or Young’s modulus. The effect of adding Al into TiC on the oxidation resistance was also explored. The critical temperature for onset of oxidation proved to increase with the Al-content from about 350°C for TiC to about 450°C for TiAlC with about 7 at% Al. A further increase in Al content did not change the onset temperature further but reduced the oxidation rate.
3

Design of low-friction PVD coating systems with enhanced running-in performance - carbon overcoats on TaC/aC coatings

Nyberg, Harald, Tokoroyama, Takayuki, Wiklund, Urban, Jacobson, Staffan January 2013 (has links)
The widespread use of low friction PVD coatings on machine elements is limited by the high costs associated with fulfilling the demands on the surface quality of both the supporting substrate and the counter surface. In this work, an attempt is made at lowering these demands, by adding a sacrificial carbon overcoat to a TaC/aC low friction coating. Both coatings were deposited by planar magnetron DC sputtering, as separate steps in a single PVD-process. Coatings were deposited on substrates of two different surface roughnesses, in order to test the ability of this coating system to function on rougher substrates. Reciprocating ball on disc tests was performed, using balls with two different surface roughnesses. The worn surfaces were investigated using 3-D profilometry and SEM. The ability of the different overcoats to initially reduce the roughness of both the coated surface and the counter surface and to produce stable, low-friction conditions was examined for the different initial roughnesses. The implications for design of efficient run-in coatings for various systems are discussed.
4

Combined Tungsten Disulfide and Graphene Low Friction Thin Film : Synthesis and Characterization

Johansson, Fredrik January 2015 (has links)
Tungsten disulfide is a proven material as a low friction solid coating. The material is well characterized and has proven its capabilities the last century. Graphene is this centurys most promising material with electrical and mechanical properties. With it the 2D material revolution have started. In this thesis I present a feasible way to sputter tungsten disulfide on graphene as a substrate with little damage to the graphene from energetic particles and a straight forward method to quantize the damage before and after deposition. Further I investigate compositional changes in the sputtered films depending on processing pressure and how tungsten disulfide film thickness and the amount of graphene damage affects the materials low friction capabilities. It is shown that graphene is not a viable substrate for a low friction tungsten disulfide film and that tungsten disulfide is an excellent material for low friction coatings even down too a few nanometers and that the films behavior during load in the friction testing significantly depends on the processing pressure during sputtering.
5

Formation and Function of Low-Friction Tribofilms

Skiöld Nyberg, Harald January 2014 (has links)
The use of low-friction coatings on machine elements is steadily increasing, and they are expected to play an important role in the reduction of fuel consumption of future motorized vehicles. Many low-friction coatings function by transformation of the outermost coating layer into tribofilms, which then cover the coating surface and its counter surface. It is within these tribofilms that sliding takes place, and their properties largely determine the performance. The role of the coating is then not to provide low friction, but to supply support and constituents for the tribofilm. In this thesis, the formation of such tribofilms has been studied for a number of different low-friction coatings. The sensitivity of the tribofilm formation towards changes in the tribological system, such as increased surface roughness, varied surrounding atmosphere and reduced availability of the tribofilm constituents has been given special attention. For TaC/aC coatings, the formation of a functioning tribofilm was found to be a multi-step process, where wear fragments are formed, agglomerated, compacted and eventually stabilized into a dense film of fine grains. This formation is delayed by a moderate roughening of the coated surface. Coatings based on tungsten disulphide (WS2) are often able to provide exceptionally low friction, but their use is restricted by their poor mechanical properties and sensitivity to humidity. Large improvements in the mechanical properties can be achieved by addition of for example carbon, but the achievable hardness is still limited. When titanium was added to W-S-C coatings, a carbidic hard phase was formed, causing drastically increased hardness, with retained low friction. Titanium oxides in the tribofilms however caused the friction to be high initially and unstable in the long term. In a study of W-S-N coatings, the effects of humidity and oxygen were studied separately, and it was found that the detrimental role of oxygen is larger than often assumed. Low friction tribofilms may form by rearrangement of coating material, but also by tribochemical reactions between constituents of the coating and its counter surface. This was observed for Ti-C-S coatings, which formed WS2 tribofilms when sliding against tungsten counter surfaces, leading to dramatic friction reductions.
6

Ultra-baixo coeficiente de atrito entre o par cerâmico Si3N4-Al2O3 em água. / Ultra-low friction coefficient between Si3N4-Al2O3 in water.

Ferreira, Vanderlei 08 September 2008 (has links)
Neste trabalho, foi investigado o comportamento tribológico dos pares cerâmicos aluminanitreto de silício no deslizamento em água e em uma suspensão de sílica coloidal em água (hidrosol). O objetivo foi verificar a possibilidade de atingir um coeficiente de atrito da ordem de unidades de milésimos, aqui chamado de ultra-baixo coeficiente de atrito (UBCA), verificar se a mudança do meio, de água para hidrosol, diminui o running-in do coeficiente de atrito, e verificar o efeito da variação da rugosidade inicial da alumina no comportamento do atrito. Os ensaios foram realizados na configuração de teste esferasobre- disco, no qual a esfera foi de nitreto de silício e o disco de alumina, sob carga normal de 54 N e velocidade de 1 m/s. A água utilizada nos ensaios foi destilada e deionizada, e a sílica coloidal amorfa, hidrofílica, sem porosidade e de tamanho médio de partícula de 12 nm foi a Aerosil® 200, e o hidrosol foi preparado com pH 8,5 num eletrólito de NaCl de 1 mM. A esfera de nitreto de silício, adquirida comercialmente, e a alumina, sinterizada em laboratório, foram caracterizadas quanto a densidade, as fases foram determinadas por difração de raios X, microscopia eletrônica de varedura (MEV) observada em amostras ceramográficas atacadas. Algumas propriedades mecânicas como dureza, módulo de elasticidade e tenacidade à fratura foram determinadas. Duas condições de rugosidade dos discos de alumina foram utilizadas nos ensaios tribológicos, 350 nm e 10 nm RMS. Em todos os ensaios, em água, em hidrosol e independentemente da rugosidade inicial do disco o coeficiente de atrito no regime permanente apresentou pequena dispersão de valores de 0,002 a 0,006, e não foi possível estabelecer diferença entre elas. A menor rugosidade do disco de alumina acarretou menor desgaste e menor período de running-in de coeficiente de atrito, tanto em água quanto em hidrosol. Os ensaios em meio de hidrosol acarretaram menor desgaste das cerâmicas e apresentaram menor running-in de coeficiente de atrito, comparados aos ensaios com água. O disco de alumina apresentou menor desgaste do que a esfera de nitreto de silício, em todas as condições estudadas. Com a análise das perdas volumétricas, da rugosidade final das superfícies desgastadas, das curvas de coeficiente de atrito e das espessuras mínimas de filme lubrificante, calculadas com uso de modelo da literatura, foi possível relacionar a diminuição do desgaste e do running-in de coeficiente de atrito em meio de hidrosol, com a presença da sílica na superfície ou próxima dela. / In this work, the tribological behavior of the alumina-silicon nitride couple was investigated under water and hydrosol (colloidal silica suspensions in water) lubricated sliding. The purposes were to study how an ultra-low friction coefficient can be achieved and to analyze the effects of the environment, lubricant and alumina roughness changes on the friction behavior. Ball-on-disk tests with a normal load of 54 N and a sliding speed of 1 m/s were carried out, using a silicon nitride ball and an alumina disk. The water used as lubricant was distilled and deionized. The silica was amorphous colloidal and hydrophilic, without porous and with a 12 nm medium particle diameter, commercially named Aerosil ® 200. The hydrosol was obtained with a pH value of 8,5 and a 1mM NaCl electrolyte. To estimate the minimum film thickness, formed during the lubricated sliding tests, a theory model was used. The commercial silicon nitride balls and the alumina disks, which were conformed and sintered in laboratory, were characterized by density, X-ray diffraction and scanning electron microscopy measurements. The mechanical properties such as hardness, Young modulus and fracture toughness were determined. The friction coefficient values obtained in the steady state regime showed low standard deviations (0,002 to 0,006) under all conditions. A shorter period of running-in was observed with the lower disk roughness, both in water and hydrosol lubrication. The hydrosol lubricated sliding produced a lower wear and friction running-in comparing with the tests under water lubrication. The alumina disk always showed lower wear than the silicon nitride ball. The volume loss, friction coefficients, worn surfaces roughness and minimum film thickness results suggest that the wear and friction coefficient running-in decrease was caused by the presence of silica on the sliding surfaces or on the near surface regions.
7

On the Mechanisms behind the Tribological Performance of Stellites

Persson, Daniel H. E. January 2005 (has links)
This thesis reveals the tribological mechanisms behind the intrinsic low friction potential of the Co-based family of alloys called Stellites. Although being an established and important group of materials, a satisfactory explanation to why they exhibit low-friction properties under severe sliding conditions has not previously been found in the literature. The main part of this thesis is dedicated to the clarification of the tribological performance of Stellites in highly loaded sliding contact. The results should assist the development of Co-free alternatives, suitable for replacing Stellites in nuclear applications. Owing to their beneficial properties they are today the most commonly used material in the sealing surfaces on gate valves in the primary circuits of boiling water reactors (BWR). The underlying reason for the replacement in the nuclear applications is an undesired contribution to the background radiation level, originating from the Co in the Stellite surfaces. The Stellites mainly consist of Cr-rich carbides in a solid solution dominated by Co. The commonly used Stellite 6 and Stellite 21 were chosen as primary test materials and applied by laser cladding, providing a metallically bonded clad layer with a fine dendritic microstructure. By combining information from a series of dedicated tribological tests and modern high-resolution analysis instruments (e.g. SEM, XRD and TEM) available at the Ångström Laboratory at Uppsala University, the following conclusions can be made regarding the tribological performance of Stellites under high load sliding. Mechanisms. The (tested) Stellites form a thick deformation hardened layer, topped with a superficial easily sheared layer of hcp basal planes aligned parallel to the worn surface. The easy-shear layer is continually regenerated, replacing worn off material. Technical benefits. The Stellites offer low-friction properties thanks to their easily sheared surface layers. The risk of severe galling is also avoided by restricting shear and adhesive transfer to very thin superficial layers. In closed sliding contacts, self-generated protective layers formed by re-deposition of wear fragments are also offered.
8

Computational Study of Low-friction Quasicrystalline Coatings via Simulations of Thin Film Growth of Hydrocarbons and Rare Gases

Setyawan, Wahyu 25 April 2008 (has links)
Quasicrystalline compounds (QC) have been shown to have lower friction compared to other structures of the same constituents. The abscence of structural interlocking when two QC surfaces slide against one another yields the low friction. To use QC as low-friction coatings in combustion engines where hydrocarbon-based oil lubricant is commonly used, knowledge of how a film of lubricant forms on the coating is required. Any adsorbed films having non-quasicrystalline structure will reduce the self-lubricity of the coatings. In this manuscript, we report the results of simulations on thin films growth of selected hydrocarbons and rare gases on a decagonal Al$_{73}$Ni$_{10}$Co$_{17}$ quasicrystal (d-AlNiCo). Grand canonical Monte Carlo method is used to perform the simulations. We develop a set of classical interatomic many-body potentials which are based on the embedded-atom method to study the adsorption processes for hydrocarbons. Methane, propane, hexane, octane, and benzene are simulated and show complete wetting and layered films. Methane monolayer forms a pentagonal order commensurate with the d-AlNiCo. Propane forms disordered monolayer. Hexane and octane adsorb in a close-packed manner consistent with their bulk structure. The results of hexane and octane are expected to represent those of longer alkanes which constitute typical lubricants. Benzene monolayer has pentagonal order at low temperatures which transforms into triangular lattice at high temperatures. The effects of size mismatch and relative strength of the competing interactions (adsorbate-substrate and between adsorbates) on the film growth and structure are systematically studied using rare gases with Lennard-Jones pair potentials. It is found that the relative strength of the interactions determines the growth mode, while the structure of the film is affected mostly by the size mismatch between adsorbate and substrate's characteristic length. On d-AlNiCo, xenon monolayer undergoes a first-order structural transition from quasiperiodic pentagonal to periodic triangular. Smaller gases such as Ne, Ar, Kr do not show such transition. A simple rule is proposed to predict the existence of the transition which will be useful in the search of the appropriate quasicrystalline coatings for certain oil lubricants. Another part of this thesis is the calculation of phase diagram of Fe-Mo-C system under pressure for studying the effects of Mo on the thermodynamics of Fe:Mo nanoparticles as catalysts for growing single-walled carbon nanotubes (SWCNTs). Adding an appropriate amount of Mo to Fe particles avoids the formation of stable binary Fe$_3$C carbide that can terminate SWCNTs growth. Eventhough the formation of ternary carbides in Fe-Mo-C system might also reduce the activity of the catalyst, there are regions in the Fe:Mo which contain enough free Fe and excess carbon to yield nanotubes. Furthermore, the ternary carbides become stable at a smaller size of particle as compared to Fe$_3$C indicating that Fe:Mo particles can be used to grow smaller SWCNTs. / Dissertation
9

Ultra-baixo coeficiente de atrito entre o par cerâmico Si3N4-Al2O3 em água. / Ultra-low friction coefficient between Si3N4-Al2O3 in water.

Vanderlei Ferreira 08 September 2008 (has links)
Neste trabalho, foi investigado o comportamento tribológico dos pares cerâmicos aluminanitreto de silício no deslizamento em água e em uma suspensão de sílica coloidal em água (hidrosol). O objetivo foi verificar a possibilidade de atingir um coeficiente de atrito da ordem de unidades de milésimos, aqui chamado de ultra-baixo coeficiente de atrito (UBCA), verificar se a mudança do meio, de água para hidrosol, diminui o running-in do coeficiente de atrito, e verificar o efeito da variação da rugosidade inicial da alumina no comportamento do atrito. Os ensaios foram realizados na configuração de teste esferasobre- disco, no qual a esfera foi de nitreto de silício e o disco de alumina, sob carga normal de 54 N e velocidade de 1 m/s. A água utilizada nos ensaios foi destilada e deionizada, e a sílica coloidal amorfa, hidrofílica, sem porosidade e de tamanho médio de partícula de 12 nm foi a Aerosil® 200, e o hidrosol foi preparado com pH 8,5 num eletrólito de NaCl de 1 mM. A esfera de nitreto de silício, adquirida comercialmente, e a alumina, sinterizada em laboratório, foram caracterizadas quanto a densidade, as fases foram determinadas por difração de raios X, microscopia eletrônica de varedura (MEV) observada em amostras ceramográficas atacadas. Algumas propriedades mecânicas como dureza, módulo de elasticidade e tenacidade à fratura foram determinadas. Duas condições de rugosidade dos discos de alumina foram utilizadas nos ensaios tribológicos, 350 nm e 10 nm RMS. Em todos os ensaios, em água, em hidrosol e independentemente da rugosidade inicial do disco o coeficiente de atrito no regime permanente apresentou pequena dispersão de valores de 0,002 a 0,006, e não foi possível estabelecer diferença entre elas. A menor rugosidade do disco de alumina acarretou menor desgaste e menor período de running-in de coeficiente de atrito, tanto em água quanto em hidrosol. Os ensaios em meio de hidrosol acarretaram menor desgaste das cerâmicas e apresentaram menor running-in de coeficiente de atrito, comparados aos ensaios com água. O disco de alumina apresentou menor desgaste do que a esfera de nitreto de silício, em todas as condições estudadas. Com a análise das perdas volumétricas, da rugosidade final das superfícies desgastadas, das curvas de coeficiente de atrito e das espessuras mínimas de filme lubrificante, calculadas com uso de modelo da literatura, foi possível relacionar a diminuição do desgaste e do running-in de coeficiente de atrito em meio de hidrosol, com a presença da sílica na superfície ou próxima dela. / In this work, the tribological behavior of the alumina-silicon nitride couple was investigated under water and hydrosol (colloidal silica suspensions in water) lubricated sliding. The purposes were to study how an ultra-low friction coefficient can be achieved and to analyze the effects of the environment, lubricant and alumina roughness changes on the friction behavior. Ball-on-disk tests with a normal load of 54 N and a sliding speed of 1 m/s were carried out, using a silicon nitride ball and an alumina disk. The water used as lubricant was distilled and deionized. The silica was amorphous colloidal and hydrophilic, without porous and with a 12 nm medium particle diameter, commercially named Aerosil ® 200. The hydrosol was obtained with a pH value of 8,5 and a 1mM NaCl electrolyte. To estimate the minimum film thickness, formed during the lubricated sliding tests, a theory model was used. The commercial silicon nitride balls and the alumina disks, which were conformed and sintered in laboratory, were characterized by density, X-ray diffraction and scanning electron microscopy measurements. The mechanical properties such as hardness, Young modulus and fracture toughness were determined. The friction coefficient values obtained in the steady state regime showed low standard deviations (0,002 to 0,006) under all conditions. A shorter period of running-in was observed with the lower disk roughness, both in water and hydrosol lubrication. The hydrosol lubricated sliding produced a lower wear and friction running-in comparing with the tests under water lubrication. The alumina disk always showed lower wear than the silicon nitride ball. The volume loss, friction coefficients, worn surfaces roughness and minimum film thickness results suggest that the wear and friction coefficient running-in decrease was caused by the presence of silica on the sliding surfaces or on the near surface regions.
10

Technologie výroby kluzného oka / Manufacturing technology of low friction rings

Svoboda, Kryštof January 2020 (has links)
The content of this thesis deals with the manufacturing of the prototyped series of low friction ring, proposing of the serial production and economical and technical evaluation. This thesis also solves the surfacing of low friction rings and testing. The thesis is devided into two main parts. First part deals with selection of material, tools and process of manufacturing low friction ring. Second part concerns surfacing and after testing. The thesis ends with economic and technical evaluation.

Page generated in 0.0785 seconds