• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrical and thermal transport properties of polymer/carbonaceous nanostructured composites / Propriétés de transport électrique et thermique de composites (polymère/charges carbonneés) nanostructurés

Islam, Rakibul 18 October 2016 (has links)
Les polymères conducteurs composites présentent des propriétés thermoélectriques qui en font une solution prometteuse, peu coûteuse, propre et efficace pour la récupération de pertes de chaleur. L’objet de cette thèse est l’étude des propriétés de composites nanostructurés à base de polyaniline (PANI) en fonction de la concentration en nanoobjets: nanotubes de carbone (1-D) et oxyde de graphène réduit (RGO) (2-D). Leur structure et morphologie ont été étudiées par MEB, MET, diffraction des rayons X et diffusion Raman. Les conductivités électrique et thermique, le coefficient Seebeck, la figure de mérite thermoélectrique ZT, ont été mesurés. La conductivité électrique montre une augmentation importante avec la concentration en charges alors que la conductivité thermique ne croît que légèrement, ceci améliore ZT de plusieurs ordres de grandeur. L’effet de la dimensionnalité des charges a été mis en évidence. Mais quelle que soit cette dimension, la conductivité électrique contrairement à la conductivité thermique, suit un comportement de percolation à travers un processus de conduction à 2-D. Ce comportement a été également observé pour la capacité thermique volumique des nanohybrides PANI/RGO ce qui en fait des candidats potentiels dans le domaine des matériaux à haute capacité thermique. Leur facteur de stockage de chaleur est traité avec un nouveau modèle analytique. Les échantillons de PANI/RGO ont été étudiés par spectroscopie diélectrique à différentes températures. Les résultats font apparaître un phénomène intéressant de piégeage de charges à l’interface PANI/RGO qui pourrait trouver des applications dans les supercondensateurs et les mémoires électroniques. / Conducting polymer nanocomposites exhibit for instance interesting thermoelectric properties which make them a promising, inexpensive, clean and efficient solution for heat waste harvesting. This thesis reports on properties of polyaniline (PANI) nanostructured composites as a function of various carbonaceous nano-fillers content such as carbon nanotubes (1-D), and 2-D reduced graphene oxide (RGO). SEM, TEM, X-ray diffraction, and Raman spectroscopy have been employed to investigate their structure and morphology. Electrical and thermal conductivity, Seebeck coefficient, and thermoelectric figure of merit (ZT) have been systematically performed. An important increase of electrical conductivity has been observed with increasing filler fraction whereas thermal conductivity only slightly increases, which enhances ZT of several orders of magnitude. Fillers dimension effect is evidenced, but, whatever this dimension, it is shown that, in contrast with thermal conductivity, electrical conductivity follows a percolation behavior through 2D conduction process. This behavior is also observed in the case of the volumetric heat capacity of PANI/RGO nanohybrids which make them potential candidates as high heat capacitive materials. For the first time their heat storage factor is assessed with a new analytical model proposed in this study. The PANI/RGO samples have also been investigated by Dielectric Spectroscopy at different temperatures. Results evidence an interesting charge trapping phenomenon occurring at the PANI/RGO interface which might find promising applications in supercapacitors or gate memory devices.
2

Optimisation par inclusion, alliage et dopage des matériaux thermoélectriques d'intérêt - application des méthodes ab initio et de dynamique moléculaire / Improving key thermoelectric materials by filling, doping and alloying using ab initio and molecular dynamics methods

Yu, Lantao 08 March 2018 (has links)
La thermoélectricité est considérée comme une source prometteuse de l'énergie puisqu'elle est capable de convertir directement la chaleur en électricité. Ceci permet de récupérer la chaleur dissipée sans causer de la pollution. Cependant, les options applicatives à grande échelle sont encore en restriction en raison du faible rendement de conversion thermoélectrique. Par conséquent, de nombreux travaux de recherche sont consacrés à l'amélioration de la performance thermoélectrique de différents matériaux, qui est caractérisée par la figure de mérite ZT. Un ZT favorable comprend simultanément un coefficient Seebeck satisfaisant, une conductivité électrique élevée et une faible conductivité thermique. Rechercher un matériau approprié avec une meilleure performance thermoélectrique est l'objectif de nos analyses. Avec les techniques de dopage, différents éléments peuvent être ajoutés dans des semi-conducteurs à différentes concentrations. La densité de charge pourrait ainsi être modifiée pour améliorer les propriétés thermoélectriques. En raison des obstacles liés à la synthèse des matériaux, des simulations numériques basées sur différentes méthodes, telles que la théorie fonctionnelle de la densité (DFT), la dynamique moléculaire (DM), sont ensuite mises en oeuvre pour estimer l'approche d'amélioration la plus prometteuse. Au cours de cette thèse, les propriétés thermoélectriques de plusieurs matériaux sont étudiées pour des applications dans différentes situations, à savoir CsSnI₃ comme un candidat potentiel avec sa haute conductivité électrique, ZnO comme un matériau thermoélectrique transparent, Bi₂Te₃ comme un traditionnel matériau avec d'autres améliorations et la cellulose comme futur semi- conducteur organique. Comme la DFT ne concerne que les propriétés des électrons (coefficient de Seebeck, conductivité électrique, conductivité thermique due aux électrons), la conductivité thermique du réseau n'est pas incluse ici. Par conséquent, DFT avec des déplacements finis et DM sont utilisés comme méthodes complémentaires pour établir la conductivité thermique due aux phonons. De cette façon, cette thèse est divisée en deux parties. Dans la première partie, des contextes théoriques de DFT sont introduits à partir de l'équation de Schrödinger. Les résultats des simulations DFT classiques sont présentés par la suite. En utilisant des positions atomiques issues de mesures expérimentales, nous avons lancé la relaxation de la structure cristalline pour assurer que chaque atome dans le système est à sa position d'équilibre. Les structures de bande d'énergie électronique sont également calculées pour valider les configurations de calcul (énergie de coupure, conditions de convergence, etc.). Une cartographie complète des valeurs propres dans l'espace réciproque est faite et les propriétés thermoélectriques sont calculées en résolvant les équations de transport de Boltzmann. Dans la deuxième partie, les théories de base des phonons sont mentionnées, suivies des introductions des méthodes en DFT avec des déplacements finis et en DM. Nous avons mis en oeuvre des simulations DM pour étudier l'influence du dopage à l'aluminium sur la conductivité thermique du réseau pour ZnO. Nous avons également utilisé la méthode en DFT avec des déplacements finis pour étudier la variation de la conductivité thermique de l'alliage Bi₂Te₃₋ₓSeₓ. / Thermoelectricity is considered a promising source of energy since it is able to directly convert heat into electricity. This makes it possible to recover dissipated heat without causing pollution. However, large-scale applicative options are still under restriction because of the dim thermoelectric conversion yield. Therefore, numerous research works are dedicated to improving thermoelectric performance of different materials, which is characterized by the dimensionless figure of merit ZT. A favorable ZT includes simultaneously a satisfying Seebeck coefficient, a high electrical conductivity and a low thermal conductivity. To seek a suitable material with a better thermoelectric performance is the objective of our analyses. With doping technics, different elements can be added into semi-conductors within different concentrations. The charge density could be thus modified in order to change thermoelectric properties. Due to hurdles related to materials synthesis, numerical simulations based on different methods, such as density functional theory (DFT), molecular dynamics (MD), are then implemented to estimate the most promising improvement approach. During this thesis, thermoelectric properties of several materials are investigated for applications in different situations, i.e. CsSnI₃ as a potential candidate with its high electronic conductivity, ZnO as a transparent thermoelectric material, Bi₂Te₃ as a traditional material with further improvements and cellulose as future organic semi-conductor. As DFT concerns only properties of electrons (Seebeck coefficient, electric conductivity, thermal conductivity due to electrons), lattice thermal conductivity is not included herein. Therefore, DFT with finite displacement and MD are used as a complementary method to establish thermal conductivity due to phonons. In this way, this thesis is divided into two parts. In the first part, theoretical backgrounds of DFT are introduced starting with Schrödinger equation. Results of classical DFT simulations are presented afterwards. By using atomic positions from experimental measurements, we launched crystal structure relaxation to ensure that every atom in the system is at its equilibrium position. Electronic band structures are also calculated to validate calculation configurations (cutoff energy, convergence conditions, etc.). A full mapping of Eigenvalues in reciprocal space is realized and thermoelectric properties are calculated by solving Boltzmann transport equations. In the second part, basic theories of phonons are mentioned, followed by introductions of DFT with finite displacements and MD methods. We implemented MD simulations to study the influence of aluminum doping on lattice thermal conductivity for ZnO. We also used DFT with finite displacements method to study lattice thermal conductivity variation of Bi₂Te₃₋ₓSeₓ alloy.
3

Transport thermoélectrique dans des contacts quantiques ponctuels et de cavités chaotiques: effets thermiques et fluctuations

Abbout, Adel 21 December 2011 (has links) (PDF)
Dans cette thèse, on s'intéresse au transport quantique des électrons dans des nano-systèmes et des cavités chaotiques . En particulier, on apporte dans un premier temps la base théorique qui permet d'expliquer les expériences de microscopie à effet de grille dans des contacts quantiques ponctuels.
4

Etude des propriétés thermoélectriques et d’isolation thermique du Si poreux et Si nanocristallin / Study of thermoelectric properties and thermal isolation of porous Si and nanocrystalline Silicon

Valalaki, Aikaterini 25 May 2016 (has links)
Cette thèse a été consacrée à l’étude du Si poreux comme matériaux à faible conductivité thermique (k) pour application aux dispositifs thermoélectriques à base de Si. D’autres paramètres thermoélectriques, comme par exemple le coefficient Seebeck de ce matériau, ont été également étudiés.Si poreux est un matériau complexe composé de nanostructures de Si séparées de vide. Quand la porosité est élevée, sa conductivité thermique est bien inférieure à celle de Si cristallin. Nous avons étudié la conductivité thermique de Si poreux de différentes morphologies et porosités dans la gamme de températures 4.2-350K. Les mesures à T<20K sont les premières dans la bibliographie et ont montré une saturation de k en fonction de T pour ces températures. A des températures supérieures à 20K, k augmente régulièrement avec la température. La dépendance de température de k de Si poreux a été interprétée en considérant des modèles théoriques, basées sur la nature “fractal” de Si poreux. Nous avons calculé la dimension fractale de Si poreux par des images de microscopie électronique à balayage (SEM) et l’algorithme de “box counting”.Deux méthodes différentes ont été utilisées pour mesurer k: la méthode à courant direct (dc) combinée avec une analyse FEM et la méthode 3ω. Nous avons proposé deux approches améliorées pour extraire k du signal de potentiel 3ω en fonction de la fréquence. La première considère l’accord des résultats expérimentaux avec la solution asymptotique intégrale de la formule de Cahill, et la seconde fait une analyse des résultats expérimentaux en solvant l’équation temporelle de transfert de chaleur par des éléments finis. Plus précise est la méthode 3ω combinée avec des éléments finis. Les résultats correspondants sont en bon accord avec ceux obtenus par la méthode dc.Nous avons aussi étudié le Si poreux comme matériau thermoélectrique. Dans ce cas, le Si poreux peut être intéressant si il a une faible porosité, car le matériau à haute porosité est très résistive. Dans ce but, nous avons déterminé le coefficient Seebeck (S) des membranes de Si poreux de différentes porosités dans la gamme 40-84%, en utilisant un dispositif de mesure spécialement développé à cet effet. Pour des échantillons de porosité 51%, la valeur de coefficient S est de 1mV/K, bien supérieure à celle le Si cristallin. La dépendance de S de la porosité n’est pas monotone, et ceci est attribué à une combinaison des effets de filtrage d’énergie, des collisions des phonons et interactions phonon-porteurs électriques. Les résultats obtenus sont basées sur des mesures de photoluminescence (PL) et observations microscopiques à transmission (TEM). Nous avons enfin conclue que, malgré le coefficient S très élevé, le Si poreux n’est pas adéquat comme matériau thermoélectrique à cause de sa faible conductivité électrique, qui diminue en augmentant la porosité à cause de la résultante déplétion de porteurs.Nous avons aussi étudié des films minces polycristallins dopés avec du Bore. Ces films sont très intéressants comme matériaux thermoélectrique, car ils sont compatibles avec les procédés de fabrication des circuits intégrés de Si. Leur performance thermoélectrique est améliorée par diminution de la taille des grains. Des films minces polycristallins d’épaisseur entre 100 et 500nm ont été étudiés. Tous leurs paramètres thermoélectriques ont été mesurés et nous avons trouvé que le facteur de performance thermoélectrique zT augmente d’un facteur 3 en diminuant l’épaisseur de 500 à 100nm ceci étant attribué à la diminution de la taille des grains dans les films, conduisant à zT = 0.033, qui est la meilleure valeur reporté dans la littérature.Ce résultat compétitif augmente le potentiel d’utilisation des films polycristallins dans des dispositifs thermoélectriques efficaces, compatibles à la technologie de Si. / This thesis is devoted to the thermal conductivity and other thermoelectric properties of porous silicon (PSi) and thin polycrystalline Si films (thickness: 100-500 nm).PSi is a complex material composed of a Si skeleton of interconnected nanowires and dots, separated by voids. When it is highly porous, its thermal conductivity is very low, even below that of the amorphous Si. This makes it a good material for use as a thermal isolation platform on the Si wafer. In addition, its Seebeck coefficient is much higher than that of bulk c-Si.We studied k of PSi layers with different morphologies and porosities, in the temperature range 4.2-350K. The measurements below 20K are the first reported in the literature. A plateau-like dependence on temperature was observed for T below 20K, while above this temperature a monotonic increase with T is observed. The observed behaviour was interpreted using known theoretical models, based mainly on the fractal nature of PSi. PSi was characterized as a fractal material by calculating its fractal dimension using SEM images and the box counting algorithm.Two different methods were used to determine porous Si thermal conductivity: the DC method combined with FEM analysis and the 3ω method. Concerning the 3ω method, two improved approaches were proposed for extracting k from the 3ω voltage as a function of frequency: the first uses a fitting of the experimental data to the asymptotic solution of the Cahill’s integral formula, and the second is based on the analysis of the experimental data by combining them with a solution of the transient heat transfer equation using FEM analysis. The results in this second case were more accurate and in very good agreement with the DC method.We also measured the Seebeck coefficient (S) of PSi membranes with porosities 40-84% using a home-built setup, which was fabricated, calibrated and tested within this thesis. A value as high as 1mV/K was obtained for the 51% porosity sample. An anomalous porosity dependence of S was obtained, which was attributed to the interplay between energy filtering, phonon scattering and phonon drag effects. The results were explained by combining them with PL and TEM measurements, used for the determination of nanocrystal sizes. We concluded that, despite of the extremely low k and the high S of PSi, the material with the studied high porosities is not adequate for use as a “good thermoelectric” material, because of its significantly low electrical conductivity, which decreases with increasing porosity, resulting from carrier depletion during formation.We also studied the thermoelectric properties of thin, boron-doped, polycrystalline silicon films, which are much more attractive for use as Si-based thermoelectrics than porous Si. Their thermoelectric performance is improved by decreasing film thickness, due to a decrease in polysilicon grain size. Thin films with thickness between 100-500nm were investigated. We measured their thermal conductivity, resistivity and Seebeck coefficient and extracted their thermoelectric figure of merit, which showed threefold increase by reducing film thickness down to 100nm. A value as high as 0.033 was achieved, which is the highest reported in the literature so far for boron-doped polysilicon films at room temperature. This increase is attributed to a decrease in the grain size of the material. The obtained value shows the interest of nanocrystalline Si films for integration in efficient Si-based thermoelectric generators, compatible with CMOS processing.
5

Particularités des oxydes de ruthénium sondées par l'effet Seebeck / Ruthenium oxide peculiarities probed by Seebeck effect

Pawula, Florent 08 October 2018 (has links)
Dans son ensemble, cette thèse porte sur la synthèse, l’étude structurale et l’étude des propriétés magnétiques et de transport de différentes familles d’oxydes de ruthénium, présentant des comportements électroniques et magnétiques variés, de structure rutile, hexaferrite de type R et hollandite. Le but de ce travail était l’étude des particularités des oxydes de ruthénium sondées par l’effet Seebeck dans les matériaux suivants : RuO2 de structure rutile (chaînes d’octaèdres de RuO6 liés par leurs arêtes, interconnectées par leurs sommets) à transport de type Boltzmann dominé par les interactions électron-phonon, les hexaferrites de type R BaCo2Ru4O11 et BaMn2Ru4O11 (octaèdres de RuO6 liés par les arêtes, formant des plans kagomé, et octaèdres de RuO6 liés par une face) ferromagnétiques doux et mauvais métaux, et deux nouvelles hollandites Sr1.5Ru6.1Cr1.9O16 et Ba1.5Ru6.1Cr1.9O16 (doubles chaînes de RuO6 liés par les arêtes, interconnectées par les sommets) avec agglomérats de spins localisés. La synthèse de ces deux nouvelles hollandites par réaction à l’état solide a permis de mettre en évidence l’existence de magnétorésistance négative dans cette famille de composés. Cette thèse montre que le comportement du coefficient Seebeck S d'oxydes de ruthénium à structures constituées d'octaèdres RuO6 majoritairement liés par leurs arêtes présente deux comportements différents. À basse T, S dépend fortement de la structure cristallographique et de la structure électronique associée. Par contre, dans la limite haute T, S tend vers une valeur commune indépendamment de la structure comme rapporté ici pour les hexaferrites de type R et les hollandites, et comme observé précédemment dans la pérovskite SrRuO3 (octaèdres RuO6 liés par les sommets) ferromagnétique métallique et dans la quadruple pérovskite LaCu3Ru4O12 (octaèdres RuO6 liés par les sommets) métallique présentant un magnétisme de type Pauli. Dans ces hexaferrites de type R BaCo2Ru4O11 et BaMn2Ru4O11 et dans ces deux nouvelles hollandites Sr1.5Ru6.1Cr1.9O16 et Ba1.5Ru6.1Cr1.9O16, le coefficient Seebeck à haute température atteint une valeur dominée par l’entropie de spin du ruthénium. / This thesis deals with the synthesis, the structural study and the magnetic properties and electronic transport studies of different ruthenium oxide families, presenting various magnetic and electronic behaviors, with rutile, R-type hexaferrite and hollandite structures. The goal of this thesis was the study of the ruthenium oxide peculiarities probed by the Seebeck effect in the following materials: RuO2 rutile (edge-shared RuO6 chain interconnected by their vertices) with Boltzmann type transport dominated by electron-phonon interactions, BaCo2Ru4O11 et BaMn2Ru4O11 R-type hexaferrites (edge-shared RuO6 octahedra, forming kagome planes, and face-shared RuO6 octahedra) soft ferromagnetic bad metals, and two new hollandites Sr1.5Ru6.1Cr1.9O16 et Ba1.5Ru6.1Cr1.9O16 (double chains of edge-shared RuO6 octahedra, interconnected by their vertices) with localized transport and cluster-glass behavior. The synthesis of both new hollandites by solid state reaction allowed us to show the existence of negative magnetoresistance in this compound family. This thesis shows that the behavior of the Seebeck coefficient of ruthenium oxides with structures mainly consisting of edge-shared RuO6 octahedra presents two different behaviors. At low T, S strongly depends on the crystallographic structure and on the associated electronic structure. On the other hand, in the high T limit, S tends a common value independently of the structure as reported here for the R-type hexaferrites and the hollandites and as previously observed in the ferromagnetic metal SrRuO3 perovskite (apex-shared RuO6 octahedra) and in the metallic with Pauli-type magnetism quadruple perovskite LaCu3Ru4O12 (apex-shared RuO6 octahedra). In these R-type hexaferrites BaCo2Ru4O11 and BaMn2Ru4O11 and these two new hollandites Sr1.5Ru6.1Cr1.9O16 and Ba1.5Ru6.1Cr1.9O16, the high temperature Seebeck coefficient reaches a value dominated by the Ru spin entropy term.

Page generated in 0.0632 seconds