• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 13
  • 11
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 129
  • 30
  • 17
  • 16
  • 15
  • 14
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The Antioxidant Defense Network: Synergistic Combinations to Prevent Oxidative Damage

Clement, Amy Marie 13 August 2008 (has links) (PDF)
One of the matchless ironies of the human body is its requirement for the highly reactive oxygen molecule, which has been clearly implicated in many diseases and the aging processes. Oxidants produced by metabolic processes damage cells by starting chemical chain reactions including oxidation of DNA and proteins as well as lipid peroxidation. Damage to DNA can cause mutations and lead to cancer if not reversed by DNA repair mechanisms. Damage to proteins causes enzyme inhibition, denaturation and protein degradation. Lipid peroxidation can cause cell lysis as well as creating mutagenic and carcinogenic by-products. The human body contains antioxidants and enzymes that together work to prevent oxidative damage to cellular components. By and large antioxidants either prevent these reactive oxygen species from being formed or remove them before they cause damage. There are many theories currently that tout the superior nature of diverse antioxidant combinations. One such theory is by Dr. Lester Packer of The University of California at Berkley. Dr. Packer puts forth the hypothesis that there is a superlative combination of five antioxidants that have the ability to "recharge" one another both in the blood plasma and intracellularly. This would result in a greater quality of antioxidant protection for an extended time. The current study evaluates Dr. Packer's theory of antioxidant combination from his book The Antioxidant Miracle. The decay rate of the antioxidants vitamin E, vitamin C, lipoic acid, glutathione, and coenzyme Q10 alone and in combination were determined using the ORAC (Oxygen Radical Absorbance Capacity) assay. The majority of the antioxidants retained activity for longer periods of time when tested alone, rather than in combination as Dr. Packer's theory would suggest. The assay was also preformed (using the same antioxidants and combinations) on oxidatively damaged Raji cancer cells. Cell viability and uptake of antioxidants into the cytoplasm were monitored. Finally, a variety of multivitamins were subjected to the ORAC assay and their antioxidant capacity compared to that of the "Packer Combination". The results suggest that multivitamins are superior antioxidants than the Packer ratio listed in The Antioxidant Miracle.
82

Recombinant Expression and Assembly of Methyl Coenzyme-M reductase

Gendron, Aleksei 24 January 2023 (has links)
Methyl-coenzyme M reductase (MCR) is the key enzyme involved in the production of methane by methanogenic archaea and its consumption by anaerobic methanotrophs (ANME). MCR is a multimeric complex composed of six different subunits arranged in a 2α, 2β, 2γ configuration that requires two molecules of its nickel-containing tetrapyrrole prosthetic group, coenzyme F430. Additionally, the α subunits of MCR house a variety of different post-translational modifications across both methanogens and ANME. In methanogens, MCR is encoded in a conserved mcrBDCGA gene cluster, which encodes accessory proteins McrD and McrC. These are believed to be involved in the assembly and activation of MCR, respectively. However, one or both accessory proteins are often omitted from the operon in other MCR-containing archaea as is the case in ANME. MCR knowledge is mostly limited to methanogens due to difficulties associated with large-scale cultivation of ANME and other MCR-containing archaea. Due to the complexity of MCR, studies on this enzyme are also largely limited to native enzymes. Developing methods for the detailed biochemical characterization ANME MCRs would be highly desirable since these enzymes are proposed to be optimized for methane oxidation and thus have immense potential for bioenergy and greenhouse gas mitigation applications. In addition to containing the necessary machinery for the production of an assembled and active MCR, model methanogens are easier to culture and have established genetic manipulation techniques, making them ideal candidates for the development of heterologous expression systems. Thus, here we sought to generate such a system for the study of various ANME MCRs in the methanogen, Methanococcus maripaludis. We report the successful expression and purification of an ANME-2d MCR, marking a significant step toward the development of a heterologous MCR expression system. Additionally, our attempts to purify various recombinant MCRs revealed the importance of including accessory proteins, particularly McrD, within expression constructs. Therefore, we also sought to functionally characterize McrD, which we show is likely an MCR chaperone that plays a key role in MCR maturation. Taken together, our work has provided key insights into MCR assembly as well as provided a foundation for the eventual development of MCR based biocatalytic systems to be used for methane mitigation strategies and bioenergy platforms. / Doctor of Philosophy / Life is divided into three domains known as Bacteria, Eukarya, and Archaea. Methanogens are anerobic microbes belonging to the domain Archaea, which can be found across a wide variety of oxygen deprived environments. These organisms can turn different carbon-containing compounds into energy and methane gas in a process known as methanogenesis. This results in roughly 90 billion tons of biologically produced methane, making methanogenesis a key point of interest for potential greenhouse gas mitigation. The methane-generating step of methanogenesis is performed by methyl-coenzyme M reductase (MCR), a large enzyme composed of two α subunits, two β subunits, and two γ subunits. Additionally, this enzyme harbors a nickel-containing cofactor which is responsible for catalyzing the difficult methane formation reaction. In addition to the MCR-encoding genes, MCR gene clusters contain two extra genes that encode accessory proteins, named McrC and McrD, which are believed to play an important role in the activation and the assembly of the enzyme, respectively. Relatives of methanogens known as Anerobic Methanotrophs (ANME) are a different type of archaea which consume methane by reversing methanogenesis in a process known as anerobic methane oxidation. Because of their ability to consume methane, there is a large interest in studying MCR from these organisms to potentially use it for methane mitigation strategies and for bioenergy applications to convert methane to more usable liquid fuels. However, due to the high difficulty of growing ANME in a lab setting, studying any biochemical processes from ANME is a difficult task. Luckily, genetic manipulation techniques are available for many methanogens, making them ideal candidates to study MCR from ANME organisms. In this work, we sought to develop a system to express and purify MCR from different methanogens and ANME in a methanogenic host, Methanococcus maripaludis. We also sought to understand the role and importance of accessory protein McrD, especially with respect to developing a proper expression system for MCRs. We were able to successfully express a ANME MCR in M. maripaludis and found that McrD is an important aspect to consider when expressing MCRs in a methanogen, although it is not essential for this protein to exist within the MCR gene cluster. This work sets the stage for the future biotechnological use of MCR for methane mitigation and bioenergy applications.
83

Coenzyme engineering of NAD(P)+ dependent dehydrogenases

Huang, Rui 11 December 2017 (has links)
Coenzyme nicotinamide adenine dinucleotide (NAD, including the oxidized form-- NAD+ and reduced form--NADH) and the phosphorylated form--nicotinamide adenine dinucleotide phosphate (NADP, including NADP+ and NADPH) are two of the most important biological electron carriers. Most NAD(P) dependent redox enzymes show a preference of either NADP or NAD as an electron acceptor or donor depending on their unique metabolic roles. In biocatalysis, the low enzymatic activities with unnatural coenzymes have made it difficult to replace costly NADP with economically advantageous NAD or other biomimetic coenzyme for catalysis. This is a significant challenge that must be addressed should in vitro biocatalysis be a viable option for the practical production of low-value biocommodities (i.e., biohydrogen). There is a significant need to first address the coenzyme selectivity of the NADP-dependent dehydrogenases and evolve mutated enzymes that accept biomimetic coenzymes. This is a major focus of this dissertation. Establishment of efficient screening methods to identify beneficial mutants from an enzymatic library is the most challenging task of coenzyme engineering of dehydrogenases. To fine tune the coenzyme preference of dehydrogenases to allow economical hydrogen production, we developed a double-layer Petri-dish based screening method to identify positive mutant of the Moorella thermoacetica 6PGDH (Moth6PGDH) with a more than 4,278-fold reversal of coenzyme selectivity from NADP+ to NAD+. This method was also used to screen the thermostable mutant of a highly active glucose 6-phosphate dehydrogenase from the mesophilic host Zymomonas mobilis. The resulting best mutant Mut 4-1 showed a more than 124-fold improvement of half-life times at 60oC without compromising the specific activity. The screening method was further upgraded for the coenzyme engineering of Thermotaga maritima 6PGDH (Tm6PGDH) on the biomimetic coenzyme NMN+. Through six-rounds of directed evolution and screening, the best mutant showed a more than 50-fold improvement in catalytic efficiency on NMN+ and a more than 6-fold increased hydrogen productivity rate from 6-phosphogluconate and NMN+ compared to those of wild-type enzyme. Together, these results demonstrated the effectiveness of screening methods developed in this research for coenzyme engineering of NAD(P) dependent dehydrogenase and efficient use of the less costly coenzyme in ivSB based hydrogen production. / Ph. D.
84

Crotonases: Nature’s exceedingly convertible catalysts

Lohans, C.T., Wang, D.Y., Wang, J., Hamed, Refaat B., Schofield, C.J. 2017 August 1914 (has links)
Yes / The crotonases comprise a widely distributed enzyme superfamily that has multiple roles in both primary and secondary metabolism. Many crotonases employ oxyanion hole-mediated stabilization of intermediates to catalyze the reaction of coenzyme A (CoA) thioester substrates (e.g., malonyl-CoA, α,β-unsaturated CoA esters) both with nucleophiles and, in the case of enolate intermediates, with varied electrophiles. Reactions of crotonases that proceed via a stabilized oxyanion intermediate include the hydrolysis of substrates including proteins, as well as hydration, isomerization, nucleophilic aromatic substitution, Claisen-type, and cofactor-independent oxidation reactions. The crotonases have a conserved fold formed from a central β-sheet core surrounded by α-helices, which typically oligomerizes to form a trimer or dimer of trimers. The presence of a common structural platform and mechanisms involving intermediates with diverse reactivity implies that crotonases have considerable potential for biocatalysis and synthetic biology, as supported by pioneering protein engineering studies on them. In this Perspective, we give an overview of crotonase diversity and structural biology and then illustrate the scope of crotonase catalysis and potential for biocatalysis. / Biotechnology and Biological Sciences Research Council, the Medical Research Council, and the Wellcome Trust
85

Chaîne respiratoire et pore de transition de perméabilité mitochondriale dans la cardioprotection / Respiratory chain and mitochondrial permeability transition pore in cardioprotection

Li, Bo 14 December 2009 (has links)
Le pore de transition de perméabilité mitochondriale (PTPm) joue un rôle majeur dans la mort cellulaire et dans la cardioprotection. Notre hypothèse est que le complexe I de la chaîne respiratoire est impliqué dans la régulation de l’ouverture du PTPm. Sur des mitochondries isolées de cœurs des rongeurs, nous avons pu démontrer que le PTPm est désensibilisé par la cyclosporine A, un inhibiteur de la cyclophiline D (CyP-D), et cet effet est largement amplifié en présence de la roténone, un inhibiteur du complexe I. Ces résultats ont été confirmés chez la souris CyP-D déficiente. L’étude de plusieurs types cellulaires a aussi confirmé l’effet de la roténone dans la régulation du PTPm. Ainsi, nous avons pu montrer que le flux d’électrons travers le complexe I est capable de réagir sur un site de régulation du PTPm cardiaque masqué par la CyP-D. De plus, les analogues de l’ubiquinone, élément de la chaîne respiratoire impliqué dans le transfert d’électrons entre les complexes I, II et III, modulent la susceptibilité du PTPm vis-à-vis du Ca2+. Par ailleurs, dans un modèle de cœur isolé du rat, le postconditionnement par le perindoprilate, un inhibiteur de l’enzyme de conversion, diminue la taille de l’infarctus après l’ischémie-reperfusion d’une façon NO-dépendant. L’ensemble de nos résultats ouvre de nouvelles perspectives thérapeutiques dans la cardioprotection et montre l’importance du complexe I et de la CyP-D comme cibles moléculaires incontournables dans la cardioprotection / The mitochondrial permeability transition pore (mPTP) plays an important role in cell death and cardioprotection. Our hypothesis is that the complex I of mitochondrial respiratory chain regulates the opening of mPTP. We showed that the opening of mPTP was inhibited by Cyclosporin A (CsA), a cyclophilin D (CyP-D) inhibitor, in mitochondria isolated from rodent heart, and this effect was largely amplified by rotenone, a complex I inhibitor. These results were confirmed in mitochondria devoid of CyP-D. A study realised in several cell lines also confirmed the effect of rotenone in mPTP regulation. We concluded that the electron flow through the respiratory chain complex I regulate mPTP opening and the regulatory site is masked by CyP-D in cardiac mitochondria. Moreover, two analogues of ubiquinone, mobile carrier of electrons between complex I, II and complex III, modulate the susceptibility of mPTP. In addition, in a model of isolated rat heart, postconditioning with Perindoprilat, an angiotensin converting enzyme inhibitor, protects the heart from ischemia-reperfusion injury in an NO-dependant manner. The findings of the present work put new therapic perspectives in cardioprotection
86

Avaliação da função mitocondrial muscular e sua repercussão na capacidade funcional nos pacientes com distrofia muscular de Duchenne / Assessment of mitochondrial function in muscle and its relation to functional capacity in patients with Duchenne muscular dystrophy

Okama, Larissa de Oliveira 10 August 2018 (has links)
A distrofia muscular de Duchenne (DMD) é uma doença hereditária, degenerativa e progressiva dos músculos esqueléticos. É causada pela ausência da proteína distrofina e caracterizada pela perda progressiva da força muscular e deterioração da capacidade funcional. Alterações na regulação da homeostase do cálcio, proteólise e alterações metabólicas, especialmente mitocondriais, são parte da patogênese da doença. A coenzima Q (CoQ10), potente antioxidante que participa da atividade da cadeia respiratória, tem sido utilizada em ensaios clínicos, entretanto, não há estudos que evidencie seu comprometimento na DMD. O objetivo deste estudo foi avaliar a CoQ10 e a da atividade da cadeia respiratória em fragmentos de biópsia muscular de pacientes com DMD e sua correlação com parâmetros clínicos e a capacidade funcional. O estudo constitui de uma etapa retrospectiva, onde foram analisadas 22 biópsias musculares de pacientes com DMD, e outra prospectiva, onde foram avaliados dez pacientes com DMD. Dez pacientes controles foram utilizados nas duas etapas do estudo. A concentração da CoQ10 foi realizada através da técnica de cromatografia líquida de alta performance de fase reversa. As atividades das enzimas da cadeia respiratória foram medidas através de técnicas espectrofotométricas. A capacidade funcional foi mensurada através das escalas Medida da Função Motora (MFM) e Escala de Avaliação para deambulantes North Star (NSAA), e dos testes cronometrados: tempo para percorrer 10 metros (T10), tempo para realizar a manobra de Gowers (TGowers) e teste da caminhada dos 6 minutos (TC6min). Fase retrospectiva: a média de idade dos pacientes com DMD foi de 6,9 anos, (DP ±2,4) e controles de 8 anos, (DP ±2,69). A dosagem média de CoQ10 nos fragmentos de pacientes com DMD foi de 8,6 µg/g de tecido (DP ±3,9) e nos fragmentos dos controles foi de 31,6 µg/g de tecido (DP ±6,9). A média da área ocupada por fibras musculares nos pacientes com DMD foi de 27,3% (DP ±14,2%) e nos controles foi de 89,2% (DP ±3,3%). Evidenciou-se alta correlação entre aquantidade de CoQ10 e a área relativa ocupada por fibras musculares (r= 0,767 e p= 0,016). As atividades dos complexos enzimáticos da cadeia respiratória dos pacientes com DMD não demonstraram deficiência. Já o resultado do ensaio conjunto dos complexos II+III, encontra-se significativamente reduzido nos pacientes com DMD. Etapa prospectiva: a média de idade dos pacientes com DMD foi de 6,5 anos, (DP ±2,4). A dosagem média de CoQ10 nos fragmentos de pacientes com DMD foi de 12,6 µg/g de tecido (DP ±5,1). A média da área ocupada por fibras musculares nos pacientes com DMD foi de 40,3% (DP ±20,4%). Houve alta correlação entre a quantidade de CoQ10 e a área relativa ocupada por fibras musculares (r= 0,690 e p= 0,058). A correlação da dosagem da CoQ10 com os instrumentos de avaliação da capacidade funcional foi alta com o TGowers e moderada com MFM total e dimensões 1 e 2, NSAA, T10 e TC6min. Em relação à área relativa de fibras musculares, houve moderada correlação com a dimensão 1 da MFM e com o TGowers. Não houve correlação da CoQ10 e da área relativa ocupada por fibras musculares com os parâmetros clínicos: idade no momento da biópsia, idade do início dos sintomas e tempo de evolução da doença. No presente estudo, concluímos que existe uma deficiência secundária de CoQ10 em pacientes com DMD, a qual contribui para entender a fisiopatologia da doença e com grande relevância para as propostas terapêuticas. / Duchenne muscular dystrophy (DMD) is a hereditary, degenerative and progressive skeletal muscles disease. It is caused by the absence of the protein dystrophin and characterized by progressive loss of muscle strength and deterioration of functional capacity. Alterations in the regulation of calcium homeostasis, proteolysis and metabolic abnormalities, especially mitochondrial dysfunction, are part of the pathogenesis of the disease. Coenzyme Q (CoQ10), a potent antioxidant that participates in respiratory chain activity, has been used in clinical trials, however, there are no studies showing its involvement in DMD. The purpose of this study was to investigate CoQ10 content and respiratory chain activity in muscle biopsy of patients with DMD and its correlation with clinical parameters and functional capacity. The study consisted of a retrospective phase, in which 22 muscle biopsies from patients with DMD were analyzed, and a prospective phase, where ten patients with DMD were evaluated. The same control group of ten patients were used in the two phases of the study. The concentration of CoQ10 was measured using the reverse phase high performance liquid chromatography technique. Activities of the respiratory chain enzymes were measured by spectrophotometry. The functional capacity was evaluated using the Motor Function Measurement (MFM) and North Star Ambulatory Assessment (NSAA) and the following timed tests: to run 10 meters (T10), to perform the Gowers maneuver (TGowers) and the 6-minute walk test (6MWT). Retrospective phase: the mean age of patients with DMD was 6.9 years (SD ± 2.4) and of controls was 8 years (SD ± 2.69). The mean CoQ10 content in fragments from patients with DMD was 8.6 ?g / g tissue (DP ± 3.9) and in fragments from controls was 31.6 ?g / g tissue (DP ± 6.9). The mean area occupied by muscle fibers in patients with DMD was 27.3% (SD ± 14.2%) and in controls was 89.2% (SD ± 3.3%). There was a high correlation between the amount of CoQ10 and the relative area occupied by muscle fibers (r= 0.767 and p= 0.016). The activities of respiratory chain enzymes from patients with DMD were not deficient. On the other hand, the results of the combined analysis of complexes II + III were significantly reduced in patients with DMD. Prospective phase: the mean age of patients with DMD was 6.5 years (SD ± 2.4). The mean CoQ10 content in fragments from patients with DMD was 12.6 ?g / g tissue (SD ± 5.1). The mean area occupied by muscle fibers in patients with DMD was 40.3% (SD ± 20.4%). There was a high correlation between the amount of CoQ10 and the relative area occupied by muscle fibers (r= 0.690 and p= 0.058). The correlation between the amount of CoQ10 and the functional capacity assessment instruments was high forTGowers and moderate for MFM total and dimensions 1 and 2, NSAA, T10 andd TC6min. Regarding the relative area of muscle fibers, there was a moderate correlation with MFM dimension 1 (standing position and transfers) and TGowers. There was no correlation between CoQ10 and relative area occupied by muscle fibers with clinical parameters: age at time of biopsy, age of onset of symptoms and time of disease progression. In the present study, we conclude that there is a secondary deficiency of CoQ10 in patients with DMD, which contributes for the understanding of its physiopathology and is relevant for therapy.
87

Avaliação quantitativa da função mitocondrial no músculo esquelético em pacientes com distrofia muscular de cinturas / Quantitative assessment of mitochondrial function in skeletal muscle of patients with limb-girdle muscular dystrophy

Bená, Marjory Irineu 18 October 2018 (has links)
As distrofias musculares de cinturas (DMC) representam um grupo heterogêneo de desordens hereditárias e degenerativas da musculatura esquelética, com evolução progressiva, caracterizadas principalmente pelo acometimento predominante das cinturas escapular e/ou pélvica. São classificadas de acordo com o padrão de herança e o gene envolvido, podendo ser autossômicas dominantes ou autossômicas recessivas. Embora as disfunções mitocondriais tenham sido pouco descritas nas DMC, alguns estudos apresentaram evidências morfológicas e bioquímicas de alterações secundárias na cadeia respiratória mitocondrial. As razões envolvidas em tais disfunções na DMC permanecem pouco compreendidas. Portanto, é imprescindível uma caracterização detalhada da disfunção mitocondrial nos pacientes com DMC para uma melhor compreensão dos processos fisiopatológicos envolvidos na doença. Os objetivos do estudo foram: quantificar a CoQ10 em fragmentos do músculo esquelético de pacientes com DMC; quantificar a atividade enzimática de cada complexo da cadeia respiratória isoladamente; quantificar a atividade dos complexos II+III em conjunto como avaliação indireta da CoQ10; verificar a relação entre a área relativa de fibras musculares no fragmento de biópsia e o grau de disfunção mitocondrial nesses fragmentos; correlacionar a função mitocondrial com parâmetros clínicos de pacientes com DMC. Participaram do estudo 21 pacientes com DMC e 9 controles saudáveis. Os parâmetros clínicos incluídos foram idade no momento da biópsia, idade de início dos sintomas e tempo de evolução da doença. A análise do metabolismo mitocondrial foi realizada por: quantificação da coenzima Q10 nos fragmentos de biópsia muscular e quantificação da atividade dos complexos enzimáticos mitocondriais I, II, III, II+III e IV da cadeia respiratória e da enzima da matriz mitocondrial citrato sintase. Foram correlacionados os parâmetros clínicos, a proporção de fibras na biópsia muscular e os resultados das análises bioquímicas para a caracterização da função mitocondrial. A média dos pacientes com DMC em relação à idade no momento da biópsia, início dos sintomas e tempo de evolução da doença foi de 28,9 anos (DP ±11,7), 16,7 anos (DP ±10,3) e 12,1 anos (DP ±10,9), respectivamente. O grupo controle apresentou média de idade no momento da biópsia de 29,6 anos (DP ±10,3). A dosagem média de CoQ10 nos fragmentos de biópsia de pacientes com DMC foi de 17,9 µg/g de tecido (DP ±9,2) e nos fragmentos dos controles foi de 29,5 µg/g de tecido (DP ±4,4). Não foi observada alteração das atividades isoladas dos complexos enzimáticos da cadeia respiratória. Houve deficiência da atividade do conjunto de complexos II+III nos pacientes com DMC. A média da área ocupada por fibras musculares nos pacientes com DMC foi de 58,5% (DP ±26,1%) e nos controles foi de 76,35% (DP ±1,9%). Observou-se correlação moderada entre a quantidade de CoQ10 e a área relativa de fibras musculares (r= 0,57 e p= 0,007). Não houve correlação da CoQ10 com os parâmetros clínicos. No presente estudo, concluímos que existe uma deficiência secundária de CoQ10 em pacientes com DMC, sendo um achado importante para melhor entendimento do acometimento mitocondrial nessa doença e uma abordagem terapêutica mais eficaz. / The limb-girdle muscular dystrophy (LGMD) is a group of inherited and degenerative disorders of the skeletal muscle, with a progressive clinical course and predominant involvement of the scapular and/or pelvic girdles. They are classified according to the pattern of inheritance (autosomal dominant or autosomal recessive) and the gene involved. Mitochondrial dysfunction has been reported in the LGMD, some studies have described morphological and biochemical evidences of secondary mitochondrial respiratory chain alterations in patients with LGMD. The reasons involved in such dysfunctions in the LGMD remain poorly understood. Therefore, a detailed characterization of the mitochondrial dysfunction in patients with LGMD allows a better understanding of the pathophysiological processes involved in the disease. Therefore, a detailed characterization of mitochondrial dysfunction in patients with LGMD is essential for a better understanding of the pathophysiological processes involved in the disease. The purposes of the study were: to quantify CoQ10 in fragments of muscle biopsy of patients with LGMD; quantify the enzymatic activity of each respiratory chain complex isolated; quantify the activity of the II + III complexes together as an indirect measure of CoQ10; to verify the relation between the relative area of muscular fibers in the fragment of biopsy and the degree of mitochondrial dysfunction in these fragments; correlate mitochondrial function with clinical parameters of patients with LGMD. Twenty-one patients with LGMD and nine healthy controls participated in the study. The clinical parameters included were age at the time of biopsy, age of onset of symptoms and time of disease progression. The analysis of mitochondrial metabolism was performed by: quantification of CoQ10 in the muscle biopsy fragments and quantification of the activity of the mitochondrial enzyme complexes I, II, III, II + III and IV of the respiratory chain and the enzyme of the mitochondrial matrix citrate synthase. We analyzed the correlation of the clinical parameters, the proportion of fibers in the muscle biopsy and the results of the biochemical analyzes for the characterization of the mitochondrial function. For the LGMD groups, the mean age at the time of biopsy, onset of symptoms and disease duration was 28.9 years (SD ± 11.7), 16.7 years (SD ± 10.3) and 12.1 years (SD ± 10.9), respectively. The control group presented a mean age at the time of biopsy of 29.6 years (SD ± 10.3). The mean CoQ10 dosage in the biopsy specimens of patients with LGMD was 17.9 ?g / g tissue (SD ± 9.2) and in the fragments of the controls was 29.5 ?g / g tissue (SD ± 4, 4). No alterations were observed in the isolated activities of the enzymatic complexes of the respiratory chain. There was a deficiency of the activity of complexes II + III in patients with LGMD. The mean area occupied by muscle fibers in patients with LGMD was 58.5% (SD ± 26.1%) and in controls it was 76.35% (SD ± 1.9%). A moderate correlation was observed between the amount of CoQ10 and the relative area of muscle fibers (r = 0.57 and p = 0.007). There was no correlation of CoQ10 with clinical parameters. In the present study, we conclude that there is a secondary deficiency of CoQ10 in patients with LGMD, which has important implications in the understanding of mitochondrial involvement in this group of diseases and the development of a more effective therapeutic approach.
88

O papel da coenzima Q-10 na injúria renal aguda induzida por contraste em ratos diabéticos / The role of coenzyme Q-10 in acute kidney injury induced by contrast in diabetic rats

Fernandes, Sheila Marques 08 December 2016 (has links)
A hiperglicemia crônica favorece a ocorrência da nefropatia induzida por contraste iodado (NIC). Diabetes Mellitus (DM) e NIC compartilham mecanismos de lesão oxidativa e indução de enzimas de proteção e adaptação celular como a coenzima Q-10 (COQ-10). O objetivo deste estudo foi avaliar o papel da COQ-10 na função e hemodinâmica renal, perfil oxidativo e histologia renal em ratos diabéticos submetidos ao modelo de NIC. Métodos: Ratos Wistar, machos, 250 a 290 g, foram randomizados nos grupos: Citrato: animais que receberam tampão citrato 0,01M, (veículo da estreptozotocina), 0,4 ml intravenoso (i.v), 1 vez; Tween 80: animais que receberam Tween 80, 1%, (veículo da COQ-10), 0,5 ml, intraperitoneal (i.p.), 1 vez; DM: animais que receberam estreptozotocina (65 mg/kg), i.v., 1 vez, no 1º dia do protocolo; DM+CI: animais DM que no 26º dia de protocolo receberam contraste iodado (CI, 6 ml/kg), i.p., 1 vez; DM+CI+COQ-10: animais DM com pré-condicionamento com COQ-10 (10 mg/kg), 1 vez por 6 dias a partir do 22º dia de protocolo, e o tratamento com CI. O protocolo de todos os grupos teve duração de 4 semanas. Foram avaliados parâmetros fisiológicos (ingestão de ração e água, peso, glicemia, razão peso do rim e peso do animal), a função renal (clearance de inulina), a hemodinâmica renal (fluxo sanguíneo renal e resistência vascular renal), o perfil oxidativo (peróxidos, óxido nítrico e substâncias reativas ao ácido tiobarbitúrico na urina, tióis no tecido renal) e análise histológica renal. Resultados: Animais DM apresentaram hiperglicemia, polidipsia, poliúria, polifagia, perda de peso e aumento da relação peso rim/animal, com redução da função renal, além de redução do fluxo sanguíneo renal, elevação da resistência vascular renal, com aumento na excreção de metabólitos oxidativos e consumo de reserva antioxidante endógena. O grupo DM+CI demonstrou redução adicional na função, alterações na hemodinâmica renal e aumento nos parâmetros de estresse oxidativo. A administração de COQ-10 atenuou a redução da função renal, preveniu alterações hemodinâmicas renais e reduziu o estresse oxidativo no grupo DM+CI. As alterações histológicas no DM e DM+CI foram discretas e o tratamento com COQ-10 previniu a progressão de danos histológicos mais extensos nos animais que receberam CI. Conclusão: O tratamento com COQ-10 demonstrou efeito antioxidante na NIC em ratos diabéticos com melhora significativa da função e hemodinâmica renal. / Chronic hyperglycemia favors the occurrence of nephropathy induced by iodinated contrast (CIN). Diabetes Mellitus (DM) and CIN share oxidative damage mechanisms and induction of protective and cellular adaptation enzymes as coenzyme Q-10 (CoQ-10). The aim of this study was to investigate the role of COQ-10 in renal function and hemodynamics, oxidative profile and renal histology in diabetic rats submitted to the NIC model. Methods: Wistar rats, male, weighing 250-290 g, were randomized into two groups: Citrate: animals that received citrate buffer 0.01M (streptozotocin), 0.4 ml, intravenous (i.v.), once; Tween 80: animals that received Tween 80, 1% (CoQ-10 vehicle), 0.5 ml, intraperitoneal (i.p.), once; DM: animals given streptozotocin (65 mg/kg) i.v., once on the first day of the protocol; CI+DM: DM animals, on the 26º day protocol, tretated with iodinated contrast (CI, 6 ml/kg) i.p., once; DM+CI+COQ-10: DM animals preconditioned with COQ-10 (10 mg/kg), once a day, for 6 days from the 22º day and treated with CI. The protocol for all groups lasted 4 weeks. Physiological parameters evaluated were (food and water intake, corporal weight, blood glucose and right kidney weight), renal function (inulin clearance), renal hemodynamics (renal blood flow and renal vascular resistance), the oxidative profile (peroxides, nitric oxide and reactive substances to thiobarbituric acid in urine, thiols in renal tissue) and renal histological analysis. Results: DM animals showed hyperglycemia, polydipsia, polyuria, polyphagia, weight loss and increased weight kidney / animal relationship with reduced renal function, as well as a reduction on renal blood flow, increased renal vascular resistance and changes in oxidative profile with increased the excretion of metabolites and oxidative consumption of endogenous antioxidant reserve. DM+CI promoted further reduction in renal function, exacerbated hemodynamic changes and increase in oxidative stress parameters. COQ-10 administration preserved renal function, prevented hemodynamic changes and reduced oxidative stress in the DM + CI + COQ-10. Histological changes in DM and DM + CI were discrete and treatment with CoQ-10 prevented the progression of the histologic damage in the animals receiving CI. Conclusion: COQ-10 presented an antioxidant effect on the NIC in diabetic rats, by improving function and renal hemodynamics and reducing oxidative stress.
89

A síntese de coenzima Q e a estabilidade de DNA mitocondrial em Saccharomyces cerevisiae. / The synthesis of coenzyme Q and stability of mitochondrial DNA in Saccharomyces cerevisiae.

Gomes, Fernando 22 June 2012 (has links)
Mutantes respiratórios de Saccharomyces cerevisiae podem apresentar uma ampla variedade de instabilidade do mtDNA. Nós analisamos diferentes classes de mutantes e observamos uma elevada instabilidade nos mutantes que não possuem a coenzima Q (CoQ) funcional. O objetivo desse trabalho foi avaliar os efeitos das alterações no estado redox da coenzima Q sobre a estabilidade do mtDNA de diferentes linhagens de S. cerevisiae. No mutante <font face=\"Symbol\">Dcoq10, que sintetiza CoQ não funcional, a inativação das NADH desidrogenases individuais Ndi1p e Nde1p, resultou numa menor instabilidade do mtDNA, acompanhada por uma diminuição na taxa de liberação de peróxido de hidrogênio (H2O2). Por outro lado, a super-expressão de Nde1p aumentou a instabilidade do mutante <font face=\"Symbol\">Dcoq10. A inativação das NADH desidrogenases na linhagem <font face=\"Symbol\">Dcoq4, deficiente na síntese da CoQ, não reduziu a instabilidade do mtDNA. Juntos, os resultados indicam que alterações no estado de oxido-redução da coenzima Q influenciam a estabilidade do mtDNA, provavelmente através da produção de espécies reativas de oxigênio. / Saccharomyces cerevisiae respiratory mutants can show a wide range of mtDNA instability. We analyze different classes of mutants and observed a higher instability among mutants lacking a functional coenzyme Q (CoQ). The aim of this study was to evaluate the effects of alterations in the redox state of coenzyme Q on the stability of mtDNA mitochondrial in different strains of Saccharomyces cerevisiae. In <font face=\"Symbol\">Dcoq10 mutant, which synthesizes CoQ nonfunctional, inactivation of individual NADH dehydrogenases Ndi1p Nde1p has shown a decreased mtDNA instability, which was accompanied by a decrement in the rate of hydrogen peroxide (H2O2) release. Moreover, overexpression of Nde1p increased instability <font face=\"Symbol\">Dcoq10 mutant. The inactivation of individual NADH dehydrogenases in <font face=\"Symbol\">Dcoq4 strain which is deficient in the synthesis of CoQ, did not reduce the instability of the mtDNA. All the results indicate that changes in the redox state of coenzyme Q influence the stability of mtDNA, probably by the production of reactive oxygen species.
90

Caracterização de linhagens de saccharomyces cerevisiae deficientes na biossíntese da Coenzima Q. / Characterization of saccharomyces cerevisiae strains deficient in the biosynthesis of Coenzyme Q.

Paulela, Janaina Areias 20 April 2018 (has links)
Coenzima Q (CoQ) é uma molécula de função essencial na transferência de elétrons da cadeia respiratória mitocondrial. Em Saccharomyces cerevisiae , a CoQ é constituída por um anel de benzeno associado a uma cadeia poliprenil, com 6 unidades de repetição, sendo por isso também denominada CoQ6 ou Q6. Ao todo já foram identificados treze genes (COQ1 COQ11, ARH1 e YAH1) nucleares necessários para biossíntese da CoQ. A maioria dos produtos Coq estão fisicamente associados em um complexo biossintético ancorado na membrana mitocondrial interna. Neste projeto, tentamos descrever resíduos relevantes de Coq3p e Coq7p aliando análises de bioinformática com testes fenotípicos para balizamento funcional. Coq7p é uma proteína com dois centros de ferro com íons carboxilato e catalisa a hidroxilação de demetoxi-Q6 (DMQ6). Neste estudo, indicamos um grupo de resíduos que modulam a atividade e a estabilidade de Coq7p: D53, R57, V111 e S114. Enquanto R57, V111 e S114 são resíduos muito conservados, V111 e S114 estão correlacionados em comunidades de coevolução. Aqui, demonstramos também que o duplo mutante S114A, V111G e o mutante S114E apresentam deficiência respiratória em temperatura não permissiva, além de acumularem o intermediário DMQ6 e sintetizarem baixas quantidades de Q6, concluindo assim que o fosmimético S114E inibe a atividade Coq7p. Dessa forma, propomos que a fosforilação do resíduo S114 promove o deslocamento de uma alça entre as hélices 2 e 3, afetando assim a atividade do centro catalítico Coq7p. Por sua vez, Coq3p atua como uma metiltransferase, catalisando diferentes passos durante a biossíntese da CoQ. Aqui, identificamos resíduos que colaboram para a atividade funcional de Coq3p: E123, S125, C131, G133, G134, H165, D203, E219, K258 e S262. Mutantes carregando as alterações E123A, H165A, D203A, E219A, K258A e S62A apresentam discreto crescimento respiratório e expressão de Coq3p similares à da linhagem selvagem, além de acumularem baixas quantidades de Q6. Enquanto C131, G133 e G134 são resíduos altamente conservados, localizados em uma alça no espaço entre fitas beta, no provável sítio ativo da proteína, mutantes C131A, G133A e G134A se superexpressos apresentam crescimento respiratório em meio contendo fonte de carbono não fermentável, além de acumularem Q6 compatíveis com os níveis de expressão proteica. Propomos assim um modelo para Coq3p, tendo os resíduos C131, G133 e G134 como centro catalítico de Coq3p. / Coenzyme Q (CoQ) is a molecule of essential function in the transfer of electrons of the mitochondrial respiratory chain. In saccharomyces cerevisiae , CoQ is constituted by a benzene ring associated with a polyprenyl chain with 6 repetition units, being therefore also denominated CoQ6 or Q6. Thirteen nuclear genes have already been identified (COQ1 COQ11, ARH1 and YAH1) required for coenzyme Q biosynthesis. Most of Coq products are physically associated in a biosynthetic complex anchored at the mitochondrial internal membrane. In this project, we identified Coq3p and Coq7p residues relevant for their respective role in CoQ synthesis combining bioinformatics analyzes with phenotypic tests for functional mapping. Coq7p is a carboxylate-bridged di-iron protein that catalyzes the hydroxylation of demetoxy-Q6 (DMQ6), the last monooxygenase step in the synthesis of CoQ. In this study, we found a group of residues that modulate the activity and stability of Coq7p: D53, R57, V111 and S114. While R57, V111 and S114 are highly conserved residues, V111 and S114 are correlated in communities of coevolution. We also demonstrate that the double mutant S114A, V111G and the mutant S114E have respiratory deficiency at non-permissive temperature, in addition to accumulating of the intermediate DMQ6 and low amounts of Q6, thus concluding that phosmimetic S114E inhibits the activity of Coq7p. Hence, we propose that the phosphorylation of S114 is required to move a loop between helices 2 and 3, thus affecting the activity of the catalytic center Coq7p. For its part, Coq3p acts as a methyltransferase, catalyzing different steps during biosynthesis of CoQ. Here we identified residues that collaborate for functional activity of Coq3p: E123, S125, C131, G133, G134, H165, D203, E219, K258 and S262. Mutants E123A, H165A, D203A, E219A, K258A and S62A, have mild respiratory growth, and expression of Coq3p levels similar to the wild strain, in addition to accumulating low amounts of Q6. While C131, G133, and G134 are residues highly conserved, located in a loop in the space between beta sheets, the overexpression of the mutants C131A, G133A and G134A present respiratory growth in medium containing non-fermentable carbon source, in addition to accumulate Q6 compatible with the levels of protein expression. We propose a model for Coq3p, with residues C131, G133 and G134 as part of Coq3p catalytic center.

Page generated in 0.0358 seconds