• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 89
  • 47
  • 20
  • 8
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 214
  • 35
  • 32
  • 29
  • 28
  • 19
  • 17
  • 17
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Sawdust Pyrolysis and Petroleum Coke CO2 Gasification at High Heating Rates

Lewis, Aaron D. 11 March 2011 (has links) (PDF)
Clean and efficient electricity can be generated using an Integrated Gasification Combined Cycle (IGCC). Although IGCC is typically used with coal, it can also be used to gasify other carbonaceous species like biomass and petroleum coke. It is important to understand the pyrolysis and gasification of these species in order to design commercial gasifiers and also to determine optimal conditions for operation. High heating-rate (100,000 K/s) pyrolysis experiments were performed with biomass (sawdust) in BYU's atmospheric flat-flame burner reactor at conditions ranging from 1163 to 1433 K with particle residence times ranging from 23 to 102 ms. Volatile yields and mass release of the sawdust were measured. The measured pyrolysis yields of sawdust are believed to be similar to those that would occur in an industrial entrained-flow gasifier since biomass pyrolysis yields depend heavily on heating rate and temperature. Sawdust pyrolysis was modeled using the Chemical Percolation Devolatilization model assuming that biomass pyrolysis occurs as a weighted average of its individual components (cellulose, hemicellulose, and lignin). Thermal cracking of tar into light gas was included using a first-order kinetic model. The pyrolysis and CO2 gasification of petroleum coke was studied in a pressurized flat-flame burner up to 15 atm for conditions where the peak temperature ranged from 1402 to 2139 K. The measured CO2 gasification kinetics are believed to be representative of those from an entrained-flow gasifier since they were measured in similar conditions of elevated pressure and high heating rates (100,000 K/s). This is in contrast to the gasification experiments commonly seen in the literature that have been carried out at atmospheric pressure and slow particle heating rates. The apparent first-order Arrhenius kinetic parameters for the CO2 gasification of petroleum coke were determined. From the experiments in this work, the ASTM volatiles value of petroleum coke appeared to be a good approximation of the mass release experienced during pyrolysis in all experiments performed from 1 to 15 atm. The reactivity of pet coke by CO2 gasification exhibited strong pressure dependence.
102

A bio-coke for anode production and the manufacturing method thereof

Hussein, Asem 24 April 2018 (has links)
Dans l’industrie de l’aluminium, le coke de pétrole calciné est considéré comme étant le composant principal de l’anode. Une diminution dans la qualité du coke de pétrole a été observée suite à une augmentation de sa concentration en impuretés. Cela est très important pour les alumineries car ces impuretés, en plus d’avoir un effet réducteur sur la performance des anodes, contaminent le métal produit. Le coke de pétrole est aussi une source de carbone fossile et, durant sa consommation, lors du processus d’électrolyse, il y a production de CO2. Ce dernier est considéré comme un gaz à effet de serre et il est bien connu pour son rôle dans le réchauffement planétaire et aussi dans les changements climatiques. Le charbon de bois est disponible et est produit mondialement en grande quantité. Il pourrait être une alternative attrayante pour le coke de pétrole dans la fabrication des anodes de carbone utilisées dans les cuves d’électrolyse pour la production de l’aluminium. Toutefois, puisqu’il ne répond pas aux critères de fabrication des anodes, son utilisation représente donc un grand défi. En effet, ses principaux désavantages connus sont sa grande porosité, sa structure désordonnée et son haut taux de minéraux. De plus, sa densité et sa conductivité électrique ont été rapportées comme étant inférieures à celles du coke de pétrole. L’objectif de ce travail est d’explorer l’effet du traitement de chaleur sur les propriétés du charbon de bois et cela, dans le but de trouver celles qui s’approchent le plus des spécifications requises pour la production des anodes. L’évolution de la structure du charbon de bois calciné à haute température a été suivie à l’aide de différentes techniques. La réduction de son contenu en minéraux a été obtenue suite à des traitements avec de l’acide chlorhydrique utilisé à différentes concentrations. Finalement, différentes combinaisons de ces deux traitements, calcination et lixiviation, ont été essayées dans le but de trouver les meilleures conditions de traitement. / In aluminum industry, calcined petroleum coke is considered as the major component in anode recipe. There is a trend of degrading quality of petroleum coke as the level of impurities is increasing. This is important for the aluminum industry because these impurities reduce the anode performance and contaminate the produced metal. In addition, petroleum coke is a fossil source of carbon and CO2, produced during its consumption in aluminum electrolysis is considered as a greenhouse gas (GHG) with a well-known role in the global warming and climate changes. Due to its availability and massive worldwide production, wood charcoal is an attractive alternative for petroleum coke in production of carbon anode for aluminum smelting process. However, using charcoal in anode production is a big challenge since it does not meet the specifications required for anode making. The very porous and disordered carbon structure and its relatively high minerals content are considered as serious disadvantages. In addition, its density and electrical conductivity were reported to be lower than those of petroleum coke. This work explores the effect of heat treatment on properties of charcoal with the aim to bring them closer to the specifications required for anode making. At high temperature, the structural evolution of charcoal was detected using several techniques. In addition, various acid leaching conditions were used to reduce the ash content. Different calcination/acid leaching combinations were performed to attain the optimum treatment condition. The materials were then characterized for air and CO2 reactivity in order to assess their potential application in anode manufacturing.
103

Estimation des propriétés physiques du coke à l’aide de technique d’émission après impact acoustique

Ishak, Elias 02 February 2021 (has links)
La production d'aluminium par le procédé de Hall-Héroult est influencée, entre autres, par la variation des propriétés de l'anode précuite en carbone. Les propriétés de celles-ci sont plus difficiles à contrôler en raison de la dégradation de la qualité et l'augmentation de la variabilité des propriétés des particules de coke de pétrole utilisées pour fabriquer les anodes en carbone. Actuellement, les propriétés du coke sont mesurées en laboratoire, sur des petits échantillons et sur une base peu fréquente. D'où l'importance de développer une méthode rapide et non destructive qui pourra être intégrée à la chaîne de production d'anodes et qui mesurera en temps réel les propriétés des particules de coke permettant d’ajuster la formulation de la pâte d’anode, telles que la densité apparente et la porosité ouverte des particules de coke. Dans une étude précédente, un montage d'analyse acoustique a été conçu et testé pour estimer la densité et la porosité des particules de coke en utilisant la transformée de Fourier (FFT) pour la décomposition en fréquences des signaux sonores, couplée à des méthodes de régression multivariées pour l'estimation de modèles prédictifs. Cette étude vise à améliorer les résultats de prédiction par l’utilisation de la transformée en ondelettes continue (CWT) et à appliquer la méthode proposée à des mélanges de particules de coke ayant une plus grande plage de variations dans leurs propriétés. Cette méthode de décomposition temps-fréquence permet d’obtenir une signature acoustique plus spécifique des particules de coke de différentes tailles et provenant de plusieurs fournisseurs. Le potentiel de l’approche proposée semble très prometteur en raison de la bonne capacité prédictive de la densité apparente et de la porosité ouverte des particules obtenues jusqu’à présent, sur des échantillons non-mélangés et mélangés provenant de différentes fournisseurs et tamisés en plusieurs fractions de tailles granulométriques. / The production of primary aluminum using the Hall-Héroult process is influenced by the variations in pre-baked carbon anode properties. Controlling their quality is a challenge due to the raw material quality degradation and variability. Petroleum coke is one of the main raw materials used to produce the carbon anodes. Currently, coke properties are measured in laboratory by using small samples and on an infrequent basis. Therefore, it is important to develop a fast and non-destructive sensing method that can be integrated into the anode production line in order to measure in real time coke particle properties allowing to adjust the anode paste formulation, such as the apparent density and open porosity of the coke particles. In a previous study, an experimental set-up based on an acoustic analysis was developed and tested to estimate the density and the porosity of coke particles. Fourier Transform (FFT) was used for frequency decomposition of the acoustic signals, and multivariate regression methods to analyze the FFT signal features and predict coke properties. This study aims at improving the predictive performance of the model by using the Continuous Wavelet Transform (CWT) and apply the proposed technique to mixtures of coke particles having a wider range of properties. This time-frequency decomposition method allows capturing the acoustic signature of coke particles of different sizes obtained from several suppliers. So far, the approach shows promising results for predicting the apparent density and the open porosity of mixed and unmixed coke particles obtained from different suppliers and sieved into several size classes.
104

Discrete element method modeling of mechanical behavior of coke aggregates during compaction process

Sadeghi Chahardeh, Alireza 21 February 2022 (has links)
Les anodes en carbone font partie de la réaction chimique de réduction de l'alumine, qui est consommée lors du procédé d'électrolyse Hall-Héroult. Le comportement des agrégats secs de coke en tant que composant principal des anodes de carbone (environ 85 %) a un rôle clé et exceptionnel dans leurs propriétés finales. L'analyse de défaillance des agrégats de coke sec permet non seulement de mieux comprendre les mécanismes de déformation des matériaux granulaires sous charge compressive, mais peut également identifier les causes potentielles de défauts structurels des anodes en carbone, telles que les fissures horizontales. Dans ce travail, il sera montré qu'un mode de défaillance particulier peut être responsable de la génération de fissures dans les anodes en carbone. Le comportement de rupture des agrégats de coke n 'est pas seulement affecté par les paramètres du processus de compactage, tels que la pression de confinement et la vitesse de déformation axiale, mais il dépend également fortement de la distribution granulométrique et de la forme des particules de coke. La méthode des éléments discrets (DEM) est utilisée pour modéliser le comportement micromécanique des agrégats de coke sec pendant le processus de compactage. De plus, le critère de travail de second ordre est utilisé pour analyser la rupture des éprouvettes de granulats de coke. Les résultats révèlent que l'augmentation de la pression de confinement augmente la probabilité du mode de diffusion de la rupture dans l'éprouvette. D'autre part, l'augmentation de la vitesse de déformation augmente les chances du mode de localisation de la déformation de la rupture dans l'éprouvette. De plus, les résultats indiquent que l'utilisation de fines particules ainsi que la diminution de la sphéricité des particules de coke augmenteront la plage de stabilité des agrégats de coke. De plus, en utilisant l'analyse des évaluations de contour de micro-déformation pendant le processus de compactage, il est montré que, à la fois en ajoutant des particules fines aux agrégats de coke et en diminuant la sphéricité des particules de coke, la possibilité de créer une bande de compression dans le coke agrégats est réduit. Étant donné que la présence des bandes de compactage dans la pâte d'anode crée une zone sujette à la génération de fissures horizontales, les résultats de cette étude pourraient conduire à la production d'anodes en carbone avec moins de défauts structurels. / Carbon anodes are part of the chemical reaction of alumina reduction, that is consumed during the Hall-Héroult electrolysis process. The behavior of dry coke aggregates as the main component of carbon anodes (about 85 %) has an exceptional key role in their final properties. The failure analysis of dry coke aggregates not only leads to a better understanding of the deformation mechanisms of granular materials under compressive loading but also can also identify the potential causes of structural defects in carbon anodes, such as horizontal cracks. In this work, it will be shown that a particular failure mode can be responsible for the crack generation in the carbon anodes. The failure behavior of the coke aggregates is not only affected by the compaction process parameters, such as the confining pressure and axial strain rate, but it is also strongly dependent on the size distribution and shape of coke particles. The discrete element method (DEM) is employed to model the micro-mechanical behavior of the dry coke aggregates during the compaction process. In addition, the second-order work criterion is used to analyze the failure of the coke aggregate specimens. The results reveal that increasing the confining pressure enhances the probability of the diffusing mode of the failure in the specimen. On the other hand, the increase of the strain rate augments the chance of the strain localization mode of the failure in the specimen. In addition, the results indicate the fact that the use of fine particles as well as decreasing the sphericity of coke particles will increase the stability range of the coke aggregates. Moreover, by using the analysis of micro-strain contour evaluations during the compaction process, it is shown that, both by adding fine particles to the coke aggregates and by decreasing the sphericity of coke particles, the possibility of creating a compression band in the coke aggregates is reduced. Since the presence of the compaction bands in the anode paste creates an area that is prone to horizontal crack generation, the results of this study could lead to the production of carbon anode with fewer structural defects.
105

Microchemical phase characterization of petroleum coke gasification slags

Groen, John Corwyn 19 June 2006 (has links)
The inorganic chemistries of coal and petroleum differ because of their disparate geologic environments of formation, the physical state of the fuels, and the type and quantity of minerals and organic compounds in the fuels. Commercial coals typically contain 2 to 25% ash (average ~ 10%) while petroleums contain 0.003 to 0.07% ash (average ~ 0.01 %). Globally averaged, coal ash is dominated by Si, Fe, Ca, AI, and S, whereas petroleum ash contains significant quantities of V, Ni, S, Fe, Ca, Na, K, Mg, Si and AI. This larger number of important elements causes petroleum combustion slags to have more complex phase assemblages. The high vanadium contents of petroleum-based combustion feedstocks yield numerous crystalline V -oxides with stoichiometric amounts of Ca, Fe, Mg, AI, Ni andlor Na in the resulting slags. Slightly lower nickel contents yield abundant NiFe and Ni sulfides. The dominance of metals over silicon results in the formation of crystalline silicates following metal saturation of immiscible Si-rich glasses. High gasification temperatures (1200 - 1500°C) promote the development of equilibrial assemblages. Chemical variations between individual feedstock cokes coupled with nonuniform operational conditions result in three principal categories of petroleum coke slag; 1) sulfide dominant, 2) silica dominant, and 3) oxide dominant. Sulfide dominant slags are not necessarily derived from feedstocks with high sulfur contents, instead they appear to derive from feedstocks rich in chalcophile elements, predominantly Fe and Ni, by attracting sulfur otherwise lost by volatilization. Slagging additives can change the chemical categorization of resulting slags through phase modifications and the formation of new phases; this in tum can strongly alter the physical behavior of the slags. Compositionally diverse spinel oxides are the most common crystalline slag phase because of their wide thermal and compositional stability ranges, refractory nature, and rapid growth kinetics. Spinel compositions are strongly influenced by the inorganic chemistry of the feedstock, the composition of host phases, and the composition of additives. Coke slag spinels are generally enriched in AI, Fe, V, Mg, and Ni, and often contain Cr that is derived from reaction with refractory material. / Ph. D.
106

Petroleum coke slags: characterization and dissolution

Lu, Jun 02 October 2007 (has links)
Slags are crystalline to vitreous by-product materials generated in many high temperature industrial processes. This study presents a general technique for the identification of the phases present in petroleum coke gasification slags. documents the phase assemblages and textures, and finally determines the dissolution of vanadium from these slags as part of the considerations of potential resource reclamation. The general identification procedure utilizes (1) recognition of separate phases using optical microscopy and scanning electron microscopy; (2) electron probe microanalysis (EPM) of chemical compositions of individual phases; (3) statistical analysis of the EPM data to eliminate spurious data; (4) estimation of valence states of transition metals using thermodynamic and computational methods; (5) derivation of chemical formulae for the phases using computational methods and chemistry of ionic substitutions; (6) verification of phase identity using X-ray diffraction analysis. More than twenty phases were determined in petroleum coke slags including oxides, silicates. vanadates, sulfate. sulfides and alloys. The reduced slags are rich in V₂>0₃ with silicates and minor amounts of sulfides and native metals whereas the oxidized slags are composed of V₂>0₄, nickel aluminum spinels. various vanadates and glass. Textural analysis provided information on the crystallization process, reaction with gasifier refractory lining materials, sulfide exsolution processes, glass devitrification. and the development of chemical zonation in some spinels. This information offers some perspectives on the potential of resource reclamation. Resource reclamation for petroleum coke slags is best assessed with a knowledge of phases, phase assemblages, textures and dissolution behavior of the material. The dissolution of vanadium. the most significant element. was examined using long term dissolution experiments. These demonstrate that vanadium concentrations are pH dependent ranging from 1500 ppm to 5000 ppm with a minimum concentration near pH 6. Vanadium dissolution rates range from L28xlO⁴ mol m² sec⁻¹ to 3.08xlO<sup>-6</sup> mol m² sec⁻¹. In view of the strategic nature of vanadium and the fact that the concentration of vanadium in slags is almost two orders of magnitude higher than the current mining grades, petroleum coke slags offer significant potential to serve as resources for vanadium. / Ph. D.
107

Influence of bio-coal ash respectively coal structure on coke production and coke quality

Bäck, Frida January 2019 (has links)
In recent years, the consequences of global warming have increased the discussion about the climate impact caused by humans and the fossil emissions. Sweden has decided to reduce the negative climate impact with a zero vision for the fossil carbon dioxide emissions in year 2045. In order to achieve this, great efforts and changes are needed both in the inhabitants' way of living but primarily in the base industry. The major cause is the use of fossil coal, which generates fossil carbon dioxide in the steel industry in particular. The fossil coal is added to the blast furnace in the steel process in forms of coke and coal, which reduces the iron and emits heat. The quality of the coke is important as it functions reducing agent, provides a mechanical support to the bed and enables the gas flow up through the blast furnace and enables dissolution of carbon in hot metal. Also, coke supplies energy from exothermic reactions between carbon and carbon dioxide that takes part in the blast furnace and the energy are further used for the heating and melting of the cold iron pellets. Due to these factors, the blast furnace process is dependent on coke for its function, which means that the entire process must be replaced if the steel production should work without fossil coal. However, there are many studies that have been done on how to replace some of the fossil coal with bio-coal, which is produced from biomass. If some of the fossil coal could be replaced by some bio-coal, this would mean that fossil carbon dioxide emissions would decrease and lead to a reduced climate impact. The process would still generate carbon dioxide, but on the other hand, a cycle would be formed because when biomass is grown, carbon dioxide is taken up, e.g. by the trees grown for this purpose. However, bio-coal does not have the same properties as fossil coal, which in turn affects the quality of the coke. Bio-coke is more reactive and more porous than fossil coke. In order to be able to replace fossil coke with bio-coke, it is likely necessary to pre-treat the biocoal before it replaces part of the fossil coal in the coke production. Bio-coal contains ash that acts as an internal catalyst. One theory is that if it is possible to produce a bio-coal with ash-free carbon structure, it can be used in the production of coke without having such a great effect on the coke quality. In this project, the ash's impact on the properties of bio-coal in coke was studied. Previous studies have shown that leaching is an effective method for removing ash from bio-coal. It can be leached in three different ways, either with water, weak acid or acid. However, it has been found that acid leaching has a certain impact on the carbon structure itself. For this reason, two types of bio-coal, torrefied Grot (forest residue) and torrefied sawdust were selected, which were leached both with water but also with weak acid in order to achieve an ash-reduced carbon structure. The acid selected was acetic acid, as it has been tested for similar purposes in previous studies. The leaching efficiency was evaluated by analysing the leachate with ICP-OES after leaching. According to the result, a significant part of the ash had been leached out, but the leaching with weak acid was much more effective than water leaching. To ensure that the carbon structure was not altered, light-optical microscopy was made which showed that the structure was intact. However, it was not possible to determine whether the pore sizes were changed after leaching and it is therefore relevant to investigate this further. Moreover, the leached II bio-coal replaced 5% of the fossil coal in the coal mixture for coke making. In addition to this, coke was also made with only the ash from the two bio-coals to see what effect the ash has on the coke quality. The result that was obtained from the TGA showed that the ash had a low impact on the reactivity of the coke. However, the coal structure of the coke had a great impact on the reactivity behaviour. Keywords: Bio-coke, bio-coal, leaching, ash, coke quality, carbon structures, torrefied sawdust
108

Cinétique de la calcination du coke de pétrole en atmosphére oxydante /

Dubuisson, Carine, January 1993 (has links)
Mémoire (M.Eng.)-- Université du Québec à Chicoutimi, 1993. / Document électronique également accessible en format PDF. CaQCU
109

Les "cokes" dans les zéolithes hiérarchisées (nature/localisation et toxicité/réactivité) / Cokes into the hierarchiacal zeolites (nature/location and toxicity/reactivity)

Ngoye, Francis 21 November 2014 (has links)
Le craquage du méthylcyclohexane (MCH) à 450 °C et la conversion de l'éthanol (EtOH) en hydrocarbures à 350 °C sous 30 bar sont effectués sur zéolithes HZSM-5 (de taille de cristallite micrométrique et nanométrique) hiérarchisées. Ces deux réactions modèles mais complexes conduisent à la formation du coke, qui est toxique en MCH et potentiellement actif en EtOH. La toxicité (Tox) et la réactivité du coke dépendent fortement des propriétés texturales des catalyseurs. Dans ce travail, il est démontré que quelle que soit la réaction, le coke dans le cas des zéolithes taille micrométriques est « lourd », il est principalement constitué d'alkylphénanthrènes et alkylpyrènes et est localisé dans les micropores. Dans les zéolithes de taille nanométriques et hiérarchisées (méso-microporeux), le coke est plutôt « léger », formé majoritairement d'alkylbenzènes et alkylnaphtalènes ; ce coke qualifié de léger, est localisé en surface externe. Le coke situé dans les canaux et intersection de la zéolithe HZSM-5 est plus toxique (Tox ≥ 1) que celui situé en surface externe (Tox < 1). La diminution du chemin de diffusion offre également un avantage certain lors de la régénération des catalyseurs en abaissant les températures d'élimination totale de ces cokes. Les effets des propriétés texturales sur les performances catalytiques et la désactivation sont nettement plus marqués dans le cas de EtOH (réaction plus sensible) que MCH. / The Methylcyclohexane (MCH) cracking at 450 °C and the ethanol (EtOH) conversion into hydrocarbons at 350 °C under 30 bar are performed over Hierarchical HZSM-5 zeolites (with micro- and nanometer crystal size). These two model but complex reactions lead to the formation of coke which is toxic with MCH and active with EtOH. The toxicity (Tox) and the reactivity of coke depend strongly on the catalysts textural properties. In this work, it's shown that whatever the reaction, coke in the case of micrometric zeolites is "heavy" and consists mainly of alkylphenanthrenes and alkylpyrenes located into the micropores. In nano-sized and hierarchical (meso-microporous) zeolites, coke is rather "light" and consisting mostly of alkyl benzenes and naphthalenes located on the external surface. The coke located into the channels and at the channels intersections of HZSM-5 zeolite is more toxic (Tox ≥ 1) than that located on the external surface (Tox <1). The decrease in the diffusion path also offers a clear advantage in the catalysts regeneration by lowering the temperature of total coke removal. The effect of textural properties on the catalytic performances and the deactivation are more pronounced in the case of EtOH (more sensitive reaction) than MCH.
110

Catalytic degradation of poly(methyl methacrylate) by zeolites and regeneration of used zeolites via ozonation / Dégradation catalytique du poly(methyl methacrylate) sur zéolithe et régénération de la zéolithe cokée par ozonation

Khangkham, Supaporn 15 November 2012 (has links)
La dégradation catalytique du PMMA a été réalisée avec succès à des températures inférieures à 300°C. L’utilisation de zéolithe comme catalyseur a permis de réduire la température de réaction par rapport aux procédés classiques de dégradation thermique. On a montré que la distribution des produits de réaction obtenus en réacteur discontinu dépend des propriétés acides du catalyseur, tandis que la composition de la fraction liquide est directement liée à la sélectivité de forme du catalyseur. Un procédé continu à lit fixe a été développé qui a permis d’obtenir le monomère MMA comme produit principal. L’augmentation de la température de réaction de 200 à 270°C a montré un effet positif sur le rendement en produit liquide. Cependant, des températures de réaction supérieures ont favorisé le craquage du monomère en produits gazeux. Une désactivation significative de la zéolithe ZSM-5 a été observée après 120 heures d’opération, entraînant une diminution du rendement en produit liquide. La régénération des extrudés de ZSM-5 cokés a pu être réalisée par ozonation à basse température - inférieure à 150°C. On a étudié les effets de la température, du débit de gaz et de la concentration en ozone sur l’élimination de carbone. Le décokage par l’ozone a débuté dès 50°C et montré un optimum à 100°C (avec une conversion de 80%). Des températures plus élevées ne se sont pas avérées bénéfiques, en raison de la forte limitation de la diffusion interne de l’ozone qui confine en surface la production de radicaux et donc le processus de régénération. Dans les conditions optimales, l’ozonation a presque complètement restauré l’activité de la zéolithe sans en endommager la texture et les sites actifs, comme le montrent les résultats de craquage du PMMA obtenus avec le catalyseur ainsi régénéré. / Catalytic degradation of PMMA was successfully performed at temperatures below 300°C. The use of zeolite catalyst could reduce reaction temperature in comparison with an ordinary thermal degradation process. It was found that the product distribution obtained from batch experiment depends on zeolite acid properties whereas the composition of the liquid fraction is directly related to the shape selectivity of the catalyst. A continuous fixed bed process was designed that allowed to obtain MMA monomer as main product. The increase of reaction temperature from 200 to 270°C showed a positive effect on the liquid product yield. However, at higher temperatures, the light product was further cracked into gaseous products. Significant deactivation of ZSM-5 catalyst was observed after 120 hours of operation, resulting in a decrease in liquid product yield. Regeneration of the coked ZSM-5 extrudates was achieved by oxidation with ozone at low temperatures, below 150°C. The effects of temperature, GHSV and inlet concentration of ozone on carbon removal efficiency were studied. Carbon removal with ozone started at 50°C and reached a maximum of 80% at 100°C. Higher temperatures were not beneficial due to the strong limitation of ozone diffusion which confines radical production then the regeneration process to the outer surface. In optimal conditions, ozonation almost fully restored the zeolite activity without damaging the texture and active sites of zeolite, as shown from the results of regenerated catalyst in PMMA cracking

Page generated in 0.0454 seconds