Spelling suggestions: "subject:"colaço"" "subject:"collaço""
1 |
Hiperplanos conexos em matróides bináriasRaquel Brito de Melo, Tereza January 2005 (has links)
Made available in DSpace on 2014-06-12T18:31:13Z (GMT). No. of bitstreams: 2
arquivo8545_1.pdf: 1387918 bytes, checksum: f45c75e1c26e36767432de4b52d087a9 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2005 / Circuitos e cocircuitos não-separadores são muito importantes para a compreensão das matróides gráficas. Por exemplo, Tutte [27] caracterizou os grafos 3-conexos planares usando o conceito de circuitos não-separadores. Bixby e Cunningham [2] generalizaram esse resultado para a classe das matróides binárias. Kelmans [11] e independentemente Seymour (veja [16]) provaram que cada matróide binária, conexa, simples e co-simples tem pelo menos um cocircuito não-separador. McNulty e Wu [15] provaram que essas matróides têm no mínimo quatro cocircuitos não-separadores, sendo este resultado o melhor possível. Lemos [14] calculou, para matróides binárias 3-conexas, a dimensão do subespaço do espaço dos cociclos gerado pelos cocircuitos não-separadores que evitam um elemento da matróide. Nesta tese, á fornecido um limite inferior para a dimensão de um tal subespaço gerado pelos cocircuitos não-separadores que evitam um conjunto com no mínimo dois elementos da matróide. Inicialmente, será feita uma abordagem geral da teoria das matróides utilizada para provar os principais resultados encontrados nesta tese, apresentados em seguida. No segundo capítulo, o problema de encontrar cocircuitos não-separadores de uma matróide binária, conexa, simples e co-simples será reduzido ao problema de encontrar cocircuitos não-separadores evitando, no máximo, dois elementos em matróides binárias 3-conexas. No terceiro capítulo, serão caracterizadas as matróides binárias 3-conexas sem cocircuitos não-separadores que evitam um 2-subconjunto do conjunto de elementos da matróide. Este resultado é essencial para o cálculo da dimensão do subespaço do espaço dos cociclos gerado pelos cocircuitos não-separadores que evitam um 2-subconjunto do conjunto de elementos de uma matróide binária 3-conexa. Será feito ainda o cálculo da dimensão de um tal subespaço quando o subconjunto de elementos evitado por esses cocircuitos é um triângulo da matróide. Além disso, será determinada a dimensão do mesmo subespaço para cocircuitos não-separadores que evitam uma coleção qualquer dos elementos de uma matróide binária 3-conexa, desde que a restrição da matróide a esse conjunto não tenha colaço
|
Page generated in 0.0357 seconds