• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 14
  • 8
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 189
  • 189
  • 56
  • 45
  • 40
  • 30
  • 30
  • 28
  • 26
  • 25
  • 24
  • 24
  • 23
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Predictive Model for Traffic Control in Underground Mines

Andersson, Claes January 2019 (has links)
Due to the nature of tunnels, a driver in an underground mine may find themselves driving without much vision of the road up ahead. The tunnels usually allow for traffic in both directions but are often only wide enough for a single vehicle. To let vehicles pass each other meeting slots have been carved into the tunnel walls, where one can park while the other passes. Because of the limited vision, however, it is unlikely that a meeting with another vehicle will occur directly next to such a meeting slot. Instead, one of the vehicles must reverse to the closest meeting slot in order to let the other pass. This makes mine tunnels a very inhospitable driving environment, causing disruptions to traffic flow throughout the mine. Unfortunately, typical traffic management or scheduling solutions are not useful, as real-time positioning for the vehicles is often poor while network connectivity cannot be guaranteed in the mine environment. This thesis presents a solution which will avoid situations where a driver needs to back up, and instead present meeting slots in which to park ahead of time. This is done by calculating velocity probability distributions for road segments from historical data and using these to estimate arrival times to meeting slots. In addition, a more comprehensive solution is presented, taking into account the accuracy of positioning, outdated information due to poor connections and more complicated scenarios. The results show that estimating arrival times using only historical data is a very feasible technology, which can realistically be implemented today. Such an implementation could, in the author's opinion, improve driver safety and efficiency significantly, compared to a driver having no information or simply knowing rough positions of nearby vehicles. This being said, there are still steps that can be taken to improve the solution and to develop a more comprehensive system overall.
102

Collision Avoidance Systems for Mine Haul Trucks and Unambiguous Dynamic Real Time Single Object Detection

Glynn, Patrick Joseph, n/a January 2005 (has links)
A suite of new collision avoidance systems (CAS) is presented for use in heavy vehicles whose structure and size necessarily impede driver visibility is introduced. The main goal of the project is to determine the appropriate use of each of the commercially available technologies and, where possible, produce a low cost variant suitable for use in proximity detection on large mining industry haul trucks. CAS variants produced were subjected to a field demonstration and, linked to the output from the earlier CAS 1 project, (a production high-definition in-cabin video monitor and r/f tagging system). The CAS 2 system used low cost Doppler continuous wave radar antennae coupled to the CAS 1 monitor to indicate the presence of an object moving at any speed above 3 Km/h relative to the antennae. The novelty of the CAS 3 system lies in the design of 3 interconnected, modules. The modules are 8 radar antennae (as used in CAS 2) modules located on the truck, software to interface with the end user (i.e. the drivers of the trucks) and a display unit. Modularisation enables the components to be independently tested, evaluated and replaced when in use. The radar antennae modules and the system as a whole are described together with the empirical tests conducted and results obtained. The tests, drawing on Monte-Carlo simulation techniques, demonstrate both the 'correctness' of the implementations and the effectiveness of the system. The results of the testing of the final prototype unit were highly successful both as a computer simulation level and in practical tests on light vehicles. A number of points, (as a consequence of the field test), are reviewed and their application to future projects discussed.
103

Tracking and threat assessment for automotive collision avoidance

Eidehall, Andreas January 2007 (has links)
This thesis is concerned with automotive active safety, and a central theme is a new safety function called Emergency Lane Assist (ELA). Automotive safety is often categorised into passive and active safety, where passive safety is concerned with reducing the effects of accidents and active safety aims at avoiding them. ELA detects lane departure manoeuvres that are likely to result in a collision and prevents them by applying a steering wheel torque. The ELA concept is based on traffic accident statistics, i.e., it is designed to give maximum safety based on information about real life traffic accidents. The ELA function puts tough requirements on the accuracy of the information from the sensors, in particular the road shape and the position of surrounding objects, and on robust threat assessment. Several signal processing methods have been developed and evaluated in order to improve the accuracy of the sensor information, and these improvements are also analysed in how they relate to the ELA requirements. Different threat assessment methods are also studied, and a common element in both the signal processing and the threat assessment is that they are based on driver behaviour models, i.e., they utilise the fact that depending on the traffic situation, drivers are more likely to behave in certain ways than others. Most of the methods are general and can be, and hopefully also will be, applied also in other safety systems, in particular when a complete picture of the vehicle surroundings is considered, including information about road and lane shape together with the position of vehicles and infrastructure. All methods in the thesis have been evaluated on authentic sensor data from actual and relevant traffic environments.
104

Rrt Based Kinodynamic Motion Planning For Multiple Camera Industrial Inspection

Bilge, Burak 01 June 2009 (has links) (PDF)
Kinodynamic motion planning is an important problem in robotics. It consists of planning the dynamic motion of a robotic system taking into account its kinematic and dynamic constraints. For this class of problems, high dimensionality is a major difficulty and finding an exact time optimal robot motion trajectory is proven to be NP-hard. Probabilistic approximate techniques have therefore been proposed in the literature to solve particular problem instances. These methods include Randomized Potential Field Planners (RPP), Probabilistic Roadmaps (PRM) and Rapidly Exploring Random Trees (RRT). When physical obstacles and differential constraints are added to the problem, applying RPPs or PRMs encounter difficulties. In order to handle these difficulties, RRTs have been proposed. In this study, we consider a multiple camera industrial inspection problem where the concurrent motion of these cameras needs to be planned. The cameras are required to capture maximum number of defect locations while globally avoiding collisions with each other and with obstacles. Our approach is to consider a solution to the kinodynamic planning problem of multiple camera inspection by making use of the RRT algorithm. We explore and resolve issues arising when RRTs are applied to this specific problem class. Along these lines, we consider the cases of a single camera without obstacles and then with obstacles. Then, we attempt to extend the study to the case of multiple camera where we also need to avoid collisions between cameras. We present simulation results to show the performance of our RRT based approach to different instrument configurations and compare with existing deterministic approaches.
105

Pilot Study of Systems to Drive Autonomous Vehicles on Test Tracks

Agardt, Erik, Löfgren, Markus January 2008 (has links)
<p>This Master’s thesis is a pilot study that investigates different systems to drive autonomous and non-autonomous vehicles simultaneously on test tracks. The thesis includes studies of communication, positioning, collision avoidance, and techniques for surveillance of vehicles which are suitable for implementation. The investigation results in a suggested system outline.</p><p>Differential GPS combined with laser scanner vision is used for vehicle state estimation (position, heading, velocity, etc.). The state information is transmitted with IEEE 802.11 to all surrounding vehicles and surveillance center. With this information a Kalman prediction of the future position for all vehicles can be estimated and used for collision avoidance.</p>
106

Κατανεμημένος έλεγχος κυκλοφορίας με σκοπό τη βελτιστοποίηση των συνθηκών ασφάλειας

Θεοδοσίου, Ιωάννης, Μπάλλας, Κωνσταντίνος 15 December 2014 (has links)
Σκοπός αυτής της διπλωματικής εργασίας είναι να αναπτυχθεί ένα μοντέλο αποφυγής συγκρόυσεων μεταξύ των οχημάτων μέσω της επικοινωνίας αυτών. Το σύστημα αυτό θα πρέπει να αναγνωρίζει τις περιπτώσεις που εγκυμονούν κίνδυνο μέσω της ανταλλαγής μηνυμάτων από τα οχήματα κάθε χρονική στιγμή και μέσα από διάφορους μηχανισμούς που επιτελούνται από αυτό, τελικά, να επεμβαίνει και να αποτρέπει τη σύγκρουση ή να ειδοποιεί τον οδηγό ώστε αυτός να αντιδράσει εγκαίρως. Για να το πετύχουμε αυτό ακολουθήσαμε τα εξής βήματα: 1. Προσομοιώσαμε τη λειτουργία μίας συσκευής GPS. 2. Σχεδιάσαμε λεκτικά και γραφικά τα μοντέλα κίνησης στα οποία θα τρέχει το σύστημά μας. 3. Ορίσαμε ένα πρωτόκολλο ανταλλαγής μηνυμάτων και προειδοποίησης σε περίπτωση συγκρουσης για αυτά τα μοντέλα κίνησης. 4. Αναπτύξαμε το σύστημα μέσω της matlab, λαμβάνοντας υπόψιν το πρωτόκολλο και τα σενάρια κίνησης των προηγούμενων βημάτων. 5. Κατασκευάσαμε μία διεπαφή εποπτίας και ελέγχου όλου του συστήματος. 6. Τέλος, κατασκευάσαμε ένα GUI ειδοποίησης του οδηγού σε περιπτώσεις κινδύνου. / Distributed traffic Control for Optimisation of the Safety Conditions.
107

Pilot Study of Systems to Drive Autonomous Vehicles on Test Tracks

Agardt, Erik, Löfgren, Markus January 2008 (has links)
This Master’s thesis is a pilot study that investigates different systems to drive autonomous and non-autonomous vehicles simultaneously on test tracks. The thesis includes studies of communication, positioning, collision avoidance, and techniques for surveillance of vehicles which are suitable for implementation. The investigation results in a suggested system outline. Differential GPS combined with laser scanner vision is used for vehicle state estimation (position, heading, velocity, etc.). The state information is transmitted with IEEE 802.11 to all surrounding vehicles and surveillance center. With this information a Kalman prediction of the future position for all vehicles can be estimated and used for collision avoidance.
108

Relationship Between Unsignalised Intersection Geometry and Accident Rates

Arndt, Owen Kingsley January 2004 (has links)
The aim of this research is to determine the effect of unsignalised intersection geometry on the rates of the various types of accidents occurring at unsignalised intersections. A literature review has identified that there is little consistency between the results of previous studies. Some studies found that particular parameters had an opposite effect to what was expected. With this in mind, the research identified reasons for these results and developed two basic approaches to mitigate some of the problems with multi-factor type studies. These approaches are 'maximise the efficiency of data collection' and 'develop techniques for analysing less than perfect data'. A database consisting of 206 unsignalised intersection sites from throughout Queensland was used for analysis. The outcome of this research confirms the validity of several of the current design standards for unsignalised intersections, in addition to identifying new engineering procedures.
109

Blink behaviour based drowsiness detection : method development and validation /

Svensson, Ulrika. January 2004 (has links)
Thesis (M.S.)--Linköping University, 2004. / Includes bibliographical references (p. 63-64). Also available online via the VTI web site (www.vti.se).
110

Perception visuelle du mouvement humain dans les interactions lors de tâches locomotrices / Visual perception of human movement during walking task interactions

Lynch, Sean 24 October 2018 (has links)
Durant ses activités quotidiennes, un marcheur interagit avec son environnement et en particulier avec les autres marcheurs, notamment en évitant toute collision. La nature de l'information visuelle utilisée pour une interaction sans collision est une question encore très ouverte à ce jour. Dans ce cadre, cette thèse vise à répondre aux questions suivantes : quels sont les indices visuels qu'un individu perçoit à partir du mouvement des autres ? Quels sont les mécanismes d'interprétation possibles et les modèles utilisés pour déterminer les possibles risques de collision ? Afin de répondre à ces questions, nous avons mis en place des expérimentations impliquant des évitements de collision entre deux marcheurs en utilisant la réalité virtuelle, permettant un contrôle détaillé de l'environnement visuel et des informations visuelles disponibles. La première étude s'est concentrée sur la nature de l'information visuelle fournie par un autre marcheur, en particulier, si ces informations sont extraites d’une perception locale considérant les segments corporels, ou d’une perception globale du mouvement du corps. La deuxième étude s'est concentrée sur l’influence de la trajectoire de l’autre marcheur (en ligne droite ou en courbe) sur la capacité à estimer de façon précise un possible risque de collision. Enfin, la troisième étude s'est concentrée sur l’effet du contact visuel sur l'interaction entre les deux marcheurs. Nous avons présenté ici le couplage entre les possibilités d'action perçues et les possibilités offertes par la nature de l'information visuelle et démontré que les marcheurs peuvent détecter les collisions futures prévues lorsqu'un autre marcheur suit une trajectoire avec des accélérations constantes. / During daily activities, a walker interacts with their environment, especially the other walkers, avoiding any collision with them. The nature of visual information that is used for a collision-free interaction requires further understanding. Specifically, the thesis aims to answer the following questions: what are the visual cues an individual perceives from the movement of others? What are the possible interpretation mechanisms and models used for determining future predicted crossing distances? To answer these questions, we designed experiments considering collision avoidance interactions between two walkers in virtual reality, allowing detailed control of the visual environment and the available visual information. The first study of the thesis focused on the nature of visual information provided from another walker, investigating whether these visual cues are extracted from local body parts or from global perception of the body motion. The second study investigated the influence of the walker's path (straight or curved), which the participant is interacting with for the accurate estimation of future risk of collision. Finally, the third study investigated whether eye contact influences the interaction. Here we have demonstrated the coupling of perceived actionopportunities affordances from the nature of visual information and evidenced that walkers can detect future predicted collisions when another walker follows a path with constant acceleration.

Page generated in 0.1185 seconds