• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 35
  • 35
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stochastic collocation methods for aeroelastic system with uncertainty

Deng, Jian Unknown Date
No description available.
12

A probabilistic approach to improving the stability of meshed power networks with embedded HVDC lines

Preece, Robin January 2013 (has links)
This thesis investigates the effects of High Voltage Direct Current (HVDC) lines andmulti-terminal grids on power system small-disturbance stability in the presence ofoperational uncertainties. The main outcome of this research is the comprehensiveprobabilistic assessment of the stability improvements that can be achieved through theuse of supplementary damping control applied to HVDC systems.Power systems are increasingly operated closer to stability boundaries in order toimprove their efficiency and economic value whilst a growing number of conventionalcontrolled power plants are being replaced by stochastic renewable generation sources.The resulting uncertainty in conditions can increase the risk of operational stabilityconcerns and should be thoroughly evaluated. There is also a growing necessity toexplore the potential improvements and challenges created by the introduction of newequipment, such as HVDC systems. In recent years, HVDC systems have become moreeconomically competitive and increasingly flexible, resulting in a proliferation ofprojects. Although primarily installed for power transmission purposes, their flexibilityand controllability can provide further benefits, such as the damping of persistentoscillations in the interconnected networks.This work contributes to a number of areas of power systems research, specificallysurrounding the effects of HVDC systems on the small-disturbance stability oftransmission networks. The application and comprehensive assessment of a Wide AreaMeasurement System (WAMS) based damping controller with various HVDC systemsis completed. The studies performed on a variety of HVDC technology types andconfigurations – as well as differing AC test networks – demonstrate the potential forHVDC-based Power Oscillation Damping (POD). These studies include examinationsof previously unexplored topics such as the effects of available modulation capacity andthe use of voltage source converter multi-terminal HVDC grids for POD. Followingthese investigations, a methodology to probabilistically test the robustness of HVDC based damping controllers is developed. This methodology makes use of classificationtechniques to identify possible mitigation options for power system operators whenperformance is sub-optimal. To reduce the high computational burden associated withthis methodology, the Probabilistic Collocation Method (PCM) is developed in order toefficiently identify the statistical distributions of critical system modes in the presenceof uncertainties. Methods of uncertain parameter reduction based on eigenvaluesensitivity are developed and demonstrated to ensure accurate results when the PCM isused with large test systems. Finally, the concepts and techniques introduced within thethesis are combined to probabilistically design a WAMS-based POD controller morerobust to operational uncertainties. The use of the PCM during the probabilistic designresults in rapid and robust synthesis of HVDC-based POD controllers.
13

Thermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method

Oguntala, George A., Abd-Alhameed, Raed 15 March 2018 (has links)
Yes / In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conductivity (nonlinear) parameters on the thermal performance of the fin. The results of this study reveal that the rate of heat transfer from the fin increases as the convective, radioactive, and magnetic parameters increase. This study establishes good agreement between the obtained results using Chebychev spectral collocation method and the results obtained using Runge-Kutta method along with shooting, homotopy perturbation, and adomian decomposition methods.
14

Numerical Methods for the Chemical Master Equation

Zhang, Jingwei 20 January 2010 (has links)
The chemical master equation, formulated on the Markov assumption of underlying chemical kinetics, offers an accurate stochastic description of general chemical reaction systems on the mesoscopic scale. The chemical master equation is especially useful when formulating mathematical models of gene regulatory networks and protein-protein interaction networks, where the numbers of molecules of most species are around tens or hundreds. However, solving the master equation directly suffers from the so called "curse of dimensionality" issue. This thesis first tries to study the numerical properties of the master equation using existing numerical methods and parallel machines. Next, approximation algorithms, namely the adaptive aggregation method and the radial basis function collocation method, are proposed as new paths to resolve the "curse of dimensionality". Several numerical results are presented to illustrate the promises and potential problems of these new algorithms. Comparisons with other numerical methods like Monte Carlo methods are also included. Development and analysis of the linear Shepard algorithm and its variants, all of which could be used for high dimensional scattered data interpolation problems, are also included here, as a candidate to help solve the master equation by building surrogate models in high dimensions. / Ph. D.
15

Solução numérica de equações integro-diferenciais singulares / Numerical solution of singular integro-differential equation

Nagamine, Andre 27 February 2009 (has links)
A Teoria das equações integrais, desde a segunda metade do século XX, tem assumido um papel cada vez maior no âmbito de problemas aplicados. Com isso, surge a necessidade do desenvolvimento de métodos numéricos cada vez mais eficazes para a resolução deste tipo de equação. Isso tem como consequência a possibilidade de resolução de uma gama cada vez maior de problemas. Nesse sentido, outros tipos de equações integrais estão sendo objeto de estudos, dentre elas as chamadas equações integro-diferenciais. O presente trabalho tem como objetivo o estudo das equações integro-diferenciais singulares lineares e não-lineares. Mais especificamente, no caso linear, apresentamos os principais resultados necessários para a obtenção de um método numérico e a formulação de suas propriedades de convergência. O caso não-linear é apresentado através de um modelo matemático para tubulações em um tipo específico de reator nuclear (LMFBR) no qual origina-se a equação integro-diferencial. A partir da equação integro-diferencial um modelo numérico é proposto com base nas condições físicas do problema / The theory of the integral equations, since the second half of the 20th century, has been assuming an ever more important role in the modelling of applied problems. Consequently, the development of new numerical methods for integral equations is called for and a larger range of problems has been possible to be solved by these new techniques. In this sense, many types of integral equations have been derived from applications and been the object of studies, among them the so called singular integro-differential equation. The present work has, as its main objective, the study of singular integrodifferential equations, both linear and non-linear. More specifically, in the linear case, we present our main results regarding the derivation of a numerical method and its uniform convergence properties. The non-linear case is introduced through the mathematical model of boiler tubes in a specific type of nuclear reactor (LMFBR) from which the integro-differential equation originates. For this integro-differential equation a numerical method is proposed based on the physical conditions of the problem
16

On the Shape Parameter of the MFS-MPS Scheme

Lin, Guo-Hwa 23 August 2010 (has links)
In this paper, we use the newly developed method of particular solution (MPS) and one-stage method of fundamental solution (MFS-MPS) for solving partial differential equation (PDE). In the 1-D Poisson equation, we prove the solution of MFS-MPS is converge to Spectral Collocation Method using Polynomial, and show that the numerical solution similar to those of using the method of particular solution (MPS), Kansa's method, and Spectral Collocation Method using Polynomial (SCMP). In 2-D, we also test these results for the Poisson equation and find the error behaviors.
17

High precision computations of multiquadric collocation method for partial differential equations

Lee, Cheng-Feng 14 June 2006 (has links)
Multiquadric collocation method is highly efficient for solving partial differential equations due to its exponential error convergence rate. More amazingly, there are two ways to reduce the error: the traditional way of refining the grid, and the unexpected way of simply increasing the value of shape constant $c$ contained in the multiquadric basis function, $sqrt{r^2 + c^2}$. The latter is accomplished without increasing computational cost. It has been speculated that in a numerical solution without roundoff error, infinite accuracy can be achieved by letting $c ightarrow infty$. The ability to obtain infinitely accurate solution is limited only by the roundoff error induced instability of matrix solution with large condition number. Using the arbitrary precision computation capability of {it Mathematica}, this paper tests the above conjecture. A sharper error estimate than previously obtained is presented in this paper. A formula for a finite, optimal $c$ value that minimizes the solution error for a given grid size is obtained. Using residual errors, constants in error estimate and optimal $c$ formula can be obtained. These results are supported by numerical examples.
18

Solução numérica de equações integro-diferenciais singulares / Numerical solution of singular integro-differential equation

Andre Nagamine 27 February 2009 (has links)
A Teoria das equações integrais, desde a segunda metade do século XX, tem assumido um papel cada vez maior no âmbito de problemas aplicados. Com isso, surge a necessidade do desenvolvimento de métodos numéricos cada vez mais eficazes para a resolução deste tipo de equação. Isso tem como consequência a possibilidade de resolução de uma gama cada vez maior de problemas. Nesse sentido, outros tipos de equações integrais estão sendo objeto de estudos, dentre elas as chamadas equações integro-diferenciais. O presente trabalho tem como objetivo o estudo das equações integro-diferenciais singulares lineares e não-lineares. Mais especificamente, no caso linear, apresentamos os principais resultados necessários para a obtenção de um método numérico e a formulação de suas propriedades de convergência. O caso não-linear é apresentado através de um modelo matemático para tubulações em um tipo específico de reator nuclear (LMFBR) no qual origina-se a equação integro-diferencial. A partir da equação integro-diferencial um modelo numérico é proposto com base nas condições físicas do problema / The theory of the integral equations, since the second half of the 20th century, has been assuming an ever more important role in the modelling of applied problems. Consequently, the development of new numerical methods for integral equations is called for and a larger range of problems has been possible to be solved by these new techniques. In this sense, many types of integral equations have been derived from applications and been the object of studies, among them the so called singular integro-differential equation. The present work has, as its main objective, the study of singular integrodifferential equations, both linear and non-linear. More specifically, in the linear case, we present our main results regarding the derivation of a numerical method and its uniform convergence properties. The non-linear case is introduced through the mathematical model of boiler tubes in a specific type of nuclear reactor (LMFBR) from which the integro-differential equation originates. For this integro-differential equation a numerical method is proposed based on the physical conditions of the problem
19

Fourierova-Galerkinova metoda pro řešení úloh stochastické homogenizace eliptických parciálních diferenciálních rovnic / Fourier-Galerkin Method for Stochastic Homogenization of Elliptic Partial Differential Equations

Vidličková, Eva January 2017 (has links)
This thesis covers the basics in the stochastic homogenization of elliptic partial differential equations, from underlying theory up to numerical ap- proaches. In particular, we introduce and analyze a combination of the Fourier-Galerkin method in the spatial domain with a collocation method in the stochastic domain. The material coefficients are assumed to depend on a finite number of random variables. We present a comparison of the Monte Carlo method with the full tensor grid and sparse grid collocation method for two applications. The first one is the checkerboard problem with continuous random variables, the other considers the material coefficients to be described in terms of an autocorrelation function.
20

Approximation Methods for Two Classes of Singular Integral Equations

Rogozhin, Alexander 29 January 2003 (has links) (PDF)
The dissertation consists of two parts. In the first part approximate methods for multidimensional weakly singular integral operators with operator-valued kernels are investigated. Convergence results and error estimates are given. There is considered an application of these methods to solving radiation transfer problems. Numerical results are presented, too. In the second part we consider a polynomial collocation method for the numerical solution of a singular integral equation over the interval. More precisely, the operator of our integral equation is supposed to be of the form \ $aI + b \mu^{-1} S \mu I $\ with \ $S$\ the Cauchy singular integral operator, with piecewise continuous coefficients \ $a$\ and \ $b,$\ and with a Jacobi weight \ $\mu.$\ To the equation we apply a collocation method, where the collocation points are the Chebyshev nodes of the first kind and where the trial space is the space of polynomials multiplied by another Jacobi weight. For the stability and convergence of this collocation method in weighted \ $L^2$\ spaces, we derive necessary and sufficient conditions. Moreover, the extension of these results to an algebra generated by the sequences of the collocation method applied to the mentioned singular integral operators is discussed and the behaviour of the singular values of the discretized operators is investigated. / Die Dissertation beschäftigt sich insgesamt mit der numerischen Analysis singulärer Integralgleichungen, besteht aber aus zwei voneinander unabhängigen Teilen. Der este Teil behandelt Diskretisierungsverfahren für mehrdimensionale schwach singuläre Integralgleichungen mit operatorwertigen Kernen. Darüber hinaus wird hier die Anwendung dieser allgemeinen Resultate auf ein Strahlungstransportproblem diskutiert, und numerische Ergebnisse werden präsentiert. Im zweiten Teil betrachten wir ein Kollokationsverfahren zur numerischen Lösung Cauchyscher singulärer Integralgleichungen auf Intervallen. Der Operator der Integralgleichung hat die Form \ $aI + b \mu^{-1} S \mu I $\ mit dem Cauchyschen singulären Integraloperator \ $S,$\ mit stückweise stetigen Koeffizienten \ $a$\ und \ $b,$\ und mit einem klassischen Jacobigewicht \ $\mu.$\ Als Kollokationspunkte dienen die Nullstellen des n-ten Tschebyscheff-Polynoms erster Art und Ansatzfunktionen sind ein in einem geeigneten Hilbertraum orthonormales System gewichteter Tschebyscheff-Polynome zweiter Art. Wir erhalten notwendige und hinreichende Bedingungen für die Stabilität und Konvergenz dieses Kollokationsverfahrens. Außerdem wird das Stabilitätskriterium auf alle Folgen aus der durch die Folgen des Kollokationsverfahrens erzeugten Algebra erweitert. Diese Resultate liefern uns Aussagen über das asymptotische Verhalten der Singulärwerte der Folge der diskreten Operatoren.

Page generated in 0.287 seconds