Spelling suggestions: "subject:"colloidal"" "subject:"kolloidal""
171 |
Sterically stabilised liposomes and related lipid aggregates : Fundamental studies on aggragate structure and stabilityJohnsson, Markus January 2001 (has links)
<p>Various aspects of and approaches towards the steric stabilisation of liposomes have been investigated, mainly by use of fluorescence techniques and cryo-transmission electron microscopy (cryo-TEM). It is shown that PEG(2000)-lipids can be incorporated in the liposome membrane up to a critical concentration of 8-10 mol% without any observable structural perturbations. Above 10 mol%, a breakdown of the liposome structure into flat lamellar discs was observed. The sterically stabilised liposomes displayed similar, or even reduced, membrane permeability as compared with conventional liposomes. The presence of PEG-lipids in the EPC membrane was shown to affect the liposome-to-micelle transition in mixtures containing OG. Little or no effects of the PEG-lipids were found on the transition in mixtures containing C<sub>12</sub>E<sub>8</sub>.</p><p>The interactions between a number of PEO-PPO-PEO triblock copolymers and PC or PC/Chol liposomes have been investigated. It is shown that these polymers adsorb rapidly onto the liposome surface and induce a substantial increase in membrane permeability as well as structural perturbations. No evidence of an effective steric stabilisation due to the presence of the polymers at the membrane surface was found. This was shown, by the use of a QCM-technique, to be a consequence of the weak interaction between the polymers and the lipid membrane. </p><p>Dispersions of reversed lipid phases in mixtures of DOPE and PEG-lipids were characterised using cryo-TEM. Dispersions displaying reasonable colloidal stability were obtained and particles exhibiting a periodic dense inner structure were observed.</p><p>PEG-lipid micelles were characterised mainly using light scattering techniques. Micelle aggregation numbers and hydrodynamic radii were determined as a function of temperature. It is shown that the inter-micellar interactions are dominated by the steric repulsion.</p><p>PEG-lipid stabilised liposomes loaded with boronated drugs intended for BNCT have been characterised. The drugs were efficiently encapsulated into the liposomes, resulting in a drug precipitation in the water core of the liposomes.</p>
|
172 |
Pseudokarst topography in a humid environment caused by contaminant-induced colloidal dispersionSassen, Douglas Spencer 30 September 2004 (has links)
Over fifty small sinkholes (~1 meter in depth and width) were found in conjunction with structural damage to homes in an area south of Cleveland, TX. The local geology lacks carbonate and evaporite deposits associated with normal sinkhole development through dissolution. The morphology and distribution of sinkholes, and the geologic setting of the site are consistent with piping erosion. However, the site lacked the significant hydraulic gradient or exit points for sediment associated with traditional piping erosion. In areas of sinkholes, geophysical measurements of apparent electrical conductivity delineated anomalously high conductivity levels that are interpreted as a brine release from a nearby oil-field waste injection well. The contaminated areas have sodium adsorption ratios (SAR) as high as 19, compared to background levels of 3. Sodium has been shown to cause dispersion of soil colloids, allowing for sediment transport at very low velocities. Thus, subsurface erosion of dispersed sediment could be possible without significant hydraulic gradients. This hypothesis is backed by the observation of the depletion of colloidal particles within the E-horizon of sinkholes. However, there is a lack of precedence of waste brines initiating colloid dispersion. Also, sodium dispersion is not thought to be an important process in piping erosion in humid settings such as this one. Therefore, laboratory experiments on samples from the site area, designed to simulate field conditions, were conducted to measure dispersion verses pH, SAR and electrical conductivity (EC). Analysis of the experimental data with neural networks showed that an increase in SAR did increase dispersion. A dispersion prediction map, constructed with the trained neural network and calibrated geophysical data, showed correlation between sinkhole locations and increased predicted dispersion. This research indicates that a contaminant high in sodium content has caused colloidal dispersion, which may have allowed nontraditional subsurface erosion to occur in an area lacking a significant hydraulic gradient.
|
173 |
Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomoleculesEverett, William Neil 15 May 2009 (has links)
Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase in published studies involving the development and implementation of these methods. The primary aim of the work presented in this dissertation was to modify and optimize video microscopy (VM) and total internal reflection microscopy (TIRM) methods to permit the collection of equilibrium binding and sampling data from interaction of surface-immobilized biomolecules. Supported lipid bilayers were utilized as model systems for functionalizing colloid and wall surfaces. Preliminary results measuring calcium-specific protein-protein interactions between surface immobilized cadherin fragments demonstrate the potential utility of this experimental system and these methods. Additionally, quantum dot-modified colloids were synthesized and evanescent wave-excited luminescence from these particles was used to construct potential energy profiles. Results from this work demonstrate that colloids can be used as ultra-sensitive probes of equilibrium interactions between biomolecules, and specialized probes, such as those modified with quantum dots, could be used in a spectral multiplexing mode to simultaneously monitor multiple interactions.
|
174 |
Sterically stabilised liposomes and related lipid aggregates : Fundamental studies on aggragate structure and stabilityJohnsson, Markus January 2001 (has links)
Various aspects of and approaches towards the steric stabilisation of liposomes have been investigated, mainly by use of fluorescence techniques and cryo-transmission electron microscopy (cryo-TEM). It is shown that PEG(2000)-lipids can be incorporated in the liposome membrane up to a critical concentration of 8-10 mol% without any observable structural perturbations. Above 10 mol%, a breakdown of the liposome structure into flat lamellar discs was observed. The sterically stabilised liposomes displayed similar, or even reduced, membrane permeability as compared with conventional liposomes. The presence of PEG-lipids in the EPC membrane was shown to affect the liposome-to-micelle transition in mixtures containing OG. Little or no effects of the PEG-lipids were found on the transition in mixtures containing C12E8. The interactions between a number of PEO-PPO-PEO triblock copolymers and PC or PC/Chol liposomes have been investigated. It is shown that these polymers adsorb rapidly onto the liposome surface and induce a substantial increase in membrane permeability as well as structural perturbations. No evidence of an effective steric stabilisation due to the presence of the polymers at the membrane surface was found. This was shown, by the use of a QCM-technique, to be a consequence of the weak interaction between the polymers and the lipid membrane. Dispersions of reversed lipid phases in mixtures of DOPE and PEG-lipids were characterised using cryo-TEM. Dispersions displaying reasonable colloidal stability were obtained and particles exhibiting a periodic dense inner structure were observed. PEG-lipid micelles were characterised mainly using light scattering techniques. Micelle aggregation numbers and hydrodynamic radii were determined as a function of temperature. It is shown that the inter-micellar interactions are dominated by the steric repulsion. PEG-lipid stabilised liposomes loaded with boronated drugs intended for BNCT have been characterised. The drugs were efficiently encapsulated into the liposomes, resulting in a drug precipitation in the water core of the liposomes.
|
175 |
Interaction Between Microgels and Oppositely Charged ProteinsJohansson, Christian January 2009 (has links)
This thesis reports on interactions between microgels and oppositely charged proteins. Two types of negatively charged microgels are investigated: poly(acrylic acid) microgels of 60-80 µm in diameter, and colloidal poly(NIPAM-co-acrylic acid) microgels of around 1 µm in diameter. The proteins used are lysozyme and cytochrome c, which both have positive net charge. The experimental techniques used in the studies of the larger microgels are mainly micromanipulator-assisted microscopy and confocal microscopy, while the smaller microgels are studied mainly with dynamic light scattering. It is observed that large amounts of protein are absorbed by the microgels, and that the uptake involves a substantial deswelling of the microgel. The uptake generally decreases as the ionic strength is increased, which is characteristic of electrostatic interactions. An ionic strength optimum is however observed in the case of lysozyme and poly(acrylic acid) microgels, where the highest uptake (10 gram lysozyme / gram microgel) is observed at ionic strength 40 mM. Cytochrome c uptake in poly(acrylic acid) microgels results in homogenous cytochrome c distribution throughout the microgel, whereas lysozyme uptake results in core-shell formation; the lysozyme concentration becomes much higher in the shell (outer part of the microgel) than in the core (inner part of the microgel). The shell constitutes a stress-bearing network which is sufficiently porous to allow protein diffusion through the shell. The different protein distributions are associated with different protein-protein interactions; strong protein-protein attraction promotes shell formation. In the case of colloidal microgels, lysozyme uptake decreases the electrophoretic mobility and the colloidal stability of the microgels. The microgels flocculate as the uptake reaches charge ratio 0.6-0.7 (positive lysozyme charges/negative microgel charges), largely independent of ionic strength. Initial experiments on the combination of cytochrome c and colloidal microgels show that colloidal stability is maintained at a range of conditions (ionic strength, protein concentration) where flocculation occurred in the case of lysozyme.
|
176 |
Colloidal Quantum Dot Schottky Barrier PhotodetectorsClifford, Jason Paul 19 January 2009 (has links)
Herein, we report the first solution-processed broadband photodetectors to break the past compromise between sensitivity and speed of response. Specifically, we report photodiodes having normalized detectivity (D*) > 1012 Jones and a 3dB bandwidth of > 2.9 MHz. This finding represents a 170,000 fold improvement in response speed over the most sensitive colloidal quantum dot (CQD) photodetector reported1 and a 100,000 fold improvement in sensitivity over the fastest CQD photodetector reported2.
At the outset of this study, sensitive, solution-processed IR photodetectors were severely limited by low response speeds1. Much faster response speeds had been demonstrated by solution-processed photodetectors operating in the visible3, but these devices offered no benefits for extending the spectral sensitivity of silicon. No available solution-processed photodetector combined high sensitivity, high operating speed, and response to illumination across the UV, visible and IR.
We developed a fast, sensitive, solution-processed photodetector based on a photodiode formed by a Schottky barrier to a CQD film. Previous attempts to form sensitive photodetectors based on CQD photodiodes had demonstrated low quantum efficiencies that limited sensitivity4,5.
Efficient, sensitive semiconductor photodiodes are based on two fundamental characteristics: a large built-in potential that separates photogenerated charge carriers and minimizes internal noise generation, and high semiconductor conductivity for efficient collection of photogenerated charge. Schottky barriers to CQD films were developed to provide high, uniform built-in potentials. A multi-step CQD ligand exchange procedure was developed to allow deposition of tightly packed films of CQDs with high mobility and sufficiently well-passivated surfaces to form high-quality metallurgical junctions.
The temporal response of the CQD photodiodes showed separate drift and diffusion components. Combined with detailed measurements of the Schottky barrier, these characteristics provided the physical basis for a numerical model of device operation. Based on this understanding, devices that excluded the slow diffusive component were fabricated, exploiting only the sub-microsecond field-driven transient to achieve MHz response bandwidth.
These devices are the first to combine megahertz-bandwidth, high sensitivity, and spectral-tunability in photodetectors based on semiconducting CQDs. Record performance is achieved through advances in materials and device architecture based on a detailed understanding the physical mechanisms underlying the operation of CQD photodiodes.
|
177 |
Colloidal Quantum Dot Schottky Barrier PhotodetectorsClifford, Jason Paul 19 January 2009 (has links)
Herein, we report the first solution-processed broadband photodetectors to break the past compromise between sensitivity and speed of response. Specifically, we report photodiodes having normalized detectivity (D*) > 1012 Jones and a 3dB bandwidth of > 2.9 MHz. This finding represents a 170,000 fold improvement in response speed over the most sensitive colloidal quantum dot (CQD) photodetector reported1 and a 100,000 fold improvement in sensitivity over the fastest CQD photodetector reported2.
At the outset of this study, sensitive, solution-processed IR photodetectors were severely limited by low response speeds1. Much faster response speeds had been demonstrated by solution-processed photodetectors operating in the visible3, but these devices offered no benefits for extending the spectral sensitivity of silicon. No available solution-processed photodetector combined high sensitivity, high operating speed, and response to illumination across the UV, visible and IR.
We developed a fast, sensitive, solution-processed photodetector based on a photodiode formed by a Schottky barrier to a CQD film. Previous attempts to form sensitive photodetectors based on CQD photodiodes had demonstrated low quantum efficiencies that limited sensitivity4,5.
Efficient, sensitive semiconductor photodiodes are based on two fundamental characteristics: a large built-in potential that separates photogenerated charge carriers and minimizes internal noise generation, and high semiconductor conductivity for efficient collection of photogenerated charge. Schottky barriers to CQD films were developed to provide high, uniform built-in potentials. A multi-step CQD ligand exchange procedure was developed to allow deposition of tightly packed films of CQDs with high mobility and sufficiently well-passivated surfaces to form high-quality metallurgical junctions.
The temporal response of the CQD photodiodes showed separate drift and diffusion components. Combined with detailed measurements of the Schottky barrier, these characteristics provided the physical basis for a numerical model of device operation. Based on this understanding, devices that excluded the slow diffusive component were fabricated, exploiting only the sub-microsecond field-driven transient to achieve MHz response bandwidth.
These devices are the first to combine megahertz-bandwidth, high sensitivity, and spectral-tunability in photodetectors based on semiconducting CQDs. Record performance is achieved through advances in materials and device architecture based on a detailed understanding the physical mechanisms underlying the operation of CQD photodiodes.
|
178 |
Investigations on Colloidal Synthesis of Copper Nanoparticles in a Two-phase Liquid-liquid SystemDadgostar, Nafiseh January 2008 (has links)
Synthesis of copper nanoparticles by a colloidal recipe in a two-phase liquid-liquid mixture (toluene/water) was investigated. The synthesis recipe used in this work was originally applied for the fabrication of alkylamine-capped gold nanoparticles. This method involves transferring metal cations from the aqueous layer to the organic one by the phase transfer reagent, tetraoctylammonium bromide, followed by reduction with sodium borohydride in the presence of oleylamine, which was used as the stabilising ligand.
Several modifications were made to the original recipe to produce copper nanoparticles with high degrees of purity and stability. These particles are potentially applicable in various industries and are considered as an alternative for expensive metal nanoparticles, such as gold, silver, and platinum. Due to the high tendency of copper for oxidation, all of the synthesis experiments were carried out in a glove box under the flow of an inert gas (N2 or Ar). The concentration of Cl− was initially increased to form anionic complexes of copper that could later react with the cationic phase transfer reagent. This modification was followed to enhance the efficiency of the transferring step; however, the presence of anion, Cl−, at the surface of the synthesized particles was reported to change their properties; thus, increasing chloride concentration was eventually ignored.
The decanting of two phases prior to the reduction step was also investigated to examine whether the site of the reduction reaction could be limited to cores of reverse micelles.
The aggregated nanoparticles, which were fabricated by reducing the decanted organic phase, were heated after the synthesis at 150°C for 30 minutes to obtain a light green solution of nanoparticles. However, further characterization was not possible due to the hydrocarbon impurities. Dodecane, which was employed as the solvent for post-synthesis heating procedure, is believed to result in these impurities. Further investigation is required to explain the mechanism by which post-synthesis heating facilitates nanoparticle stabilization.
Duplication of the original recipe for copper in an inert atmosphere resulted in a mixture of assembled layers of separated copper nanocrystals with an average size of ~ 5 nm and aggregated clusters of cubic copper (I) oxide nanoparticles. The possible mechanism for this division is believed to be the presence of the phase transfer reagent capped to the surface of a portion of synthesized particles leading to their metastability.
|
179 |
Investigations on Colloidal Synthesis of Copper Nanoparticles in a Two-phase Liquid-liquid SystemDadgostar, Nafiseh January 2008 (has links)
Synthesis of copper nanoparticles by a colloidal recipe in a two-phase liquid-liquid mixture (toluene/water) was investigated. The synthesis recipe used in this work was originally applied for the fabrication of alkylamine-capped gold nanoparticles. This method involves transferring metal cations from the aqueous layer to the organic one by the phase transfer reagent, tetraoctylammonium bromide, followed by reduction with sodium borohydride in the presence of oleylamine, which was used as the stabilising ligand.
Several modifications were made to the original recipe to produce copper nanoparticles with high degrees of purity and stability. These particles are potentially applicable in various industries and are considered as an alternative for expensive metal nanoparticles, such as gold, silver, and platinum. Due to the high tendency of copper for oxidation, all of the synthesis experiments were carried out in a glove box under the flow of an inert gas (N2 or Ar). The concentration of Cl− was initially increased to form anionic complexes of copper that could later react with the cationic phase transfer reagent. This modification was followed to enhance the efficiency of the transferring step; however, the presence of anion, Cl−, at the surface of the synthesized particles was reported to change their properties; thus, increasing chloride concentration was eventually ignored.
The decanting of two phases prior to the reduction step was also investigated to examine whether the site of the reduction reaction could be limited to cores of reverse micelles.
The aggregated nanoparticles, which were fabricated by reducing the decanted organic phase, were heated after the synthesis at 150°C for 30 minutes to obtain a light green solution of nanoparticles. However, further characterization was not possible due to the hydrocarbon impurities. Dodecane, which was employed as the solvent for post-synthesis heating procedure, is believed to result in these impurities. Further investigation is required to explain the mechanism by which post-synthesis heating facilitates nanoparticle stabilization.
Duplication of the original recipe for copper in an inert atmosphere resulted in a mixture of assembled layers of separated copper nanocrystals with an average size of ~ 5 nm and aggregated clusters of cubic copper (I) oxide nanoparticles. The possible mechanism for this division is believed to be the presence of the phase transfer reagent capped to the surface of a portion of synthesized particles leading to their metastability.
|
180 |
Magnetic Manipulation and Assembly of Multi-component Particle SuspensionsErb, Randall Morgan January 2009 (has links)
<p>This thesis will investigate previously unexplored concepts in magnetic manipulation including controlling the assembly of magnetic and nonmagnetic particles either in bulk fluid or near a substrate. Both uniform glass interfaces and substrates with magnetic microstructures are considered. The main goal of this work is to discuss new strategies for implementing magnetic assembly systems that are capable of exquisitely controlling the positions and orientations of single-component as well as multi-component particle suspensions, including both magnetic and non-magnetic particles. This work primarily focuses on controlling spherical particles; however, there are also several demonstrations of controlling anisotropically shaped particles, such as microrods and Janus colloids. </p><p> Throughout this work, both conventional magnetophoresis and inverse magnetophoresis techniques were employed, the latter relying on ferrofluid, i.e. a suspension of magnetic nanoparticles in a nonmagnetic carrier fluid, which provides a strong magnetic permeability in the surrounding fluid in order to manipulate effectively non-magnetic materials. In each system it was found that the dimensionless ratio between magnetic energy and thermal energy could be successfully used to describe the degree of control over the positions and orientations of the particles. One general conclusion drawn from this work is that the ferrofluid can be modeled with a bulk effective permeability for length scales on the order of 100 nm. This greatly reduces modeling requirements since ferrofluid is a complex collection of discrete nanoparticles, and not a homogenous fluid. It was discovered that the effective magnetic permeability was often much larger than expected, and this effect was attributed to particle aggregation which is inherent in these systems. In nearly all cases, these interactions caused the ferrofluid to behave as though the nanoparticles were clustered with an effective diameter about twice the real diameter.</p><p> The principle purpose of this thesis is to present novel systems which offer the ability to manipulate and orient multi-component spherical or anisotropic particle suspensions near surfaces or in the bulk fluid. First, a novel chip-based technique for transport and separation of magnetic microparticles is discussed. Then, the manipulation of magnetic nanoparticles, for which Brownian diffusion is a significant factor, is explored and modeled. Parallel systems of nonmagnetic particles suspended in ferrofluid are also considered in the context of forming steady state concentration gradients. Next, systems of particles interacting with planar glass interfaces are analyzed, modeled, and a novel application is developed to study the interactions between antigen-antibody pairs by using the self-repulsion of non-magnetic beads away from a ferrofluid/glass interface. This thesis also focuses on studying the ability to manipulate particles in the bulk fluid. First, simple dipole-dipole aggregation phenomenon is studied in suspensions of both nonmagnetic polystyrene particles and endothelial cells. For the sizes of particles considered in these studies, currently accepted diffusion limited aggregation models could not explain the observed behavior, and a new theory was proposed. Next, this thesis analyzed the interactions that exist in multi-component magnetic and nonmagnetic particle suspensions, which led to a variety of novel and interesting colloidal assemblies. This thesis finally discusses the manipulation of anisotropic particles, namely, the ability to control the orientation of particles including both aligning nonmagnetic rods in ferrofluid as well as achieving near-holonomic control of Janus particles with optomagnetic traps. General conclusions of the viability of these techniques are outlined and future studies are proposed in the final chapter.</p> / Dissertation
|
Page generated in 0.5314 seconds