• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solution synthesis of colloidal strontium zirconium sulfide nanomaterials

Arrykova, Naira 13 August 2024 (has links) (PDF)
Chalcogenide perovskites with a distorted ABX3 structure (A: Ca, Ba, Sr; B: Zr, Hf; X: S, Se) are a prominent focus in optoelectronic materials. One of these is BaZrS3 which has garnered significant attention in perovskite materials due to its distinctive distorted perovskite structure and valuable optical properties that are viable for a single-junction solar cell and present a compelling option for tandem solar cell configurations. Another promising material is SrZrS3 which exists in two phases: needle-like non-perovskite α-SrZrS3 and distorted perovskite β-SrZrS3. The distorted perovskite phase shows promising luminescence properties in bulk, making it potentially viable for LED applications. In this work, we show that the non-perovskite α-SrZrS3 was accessed through colloidal synthesis at 330 °C and 365 °C by increasing concentrations of precursors. In order to favor the perovskite phase, we conducted alloying experiments incorporating varying percentages of doped Sr2+ into BaZrS3 to first synthesize a distorted perovskite Ba(1-x)SrxZrS3. Through varying percentages and varying reaction conditions such as temperature, time of reaction, and doping concentrations, we aim to optimize the synthesis of colloidal Ba(1-x)SrxZrS3 nanocrystals.
2

Photovoltaic devices based on Cu(In1-xGax)Se2 nanocrystal inks

Akhavan, Vahid Atar 15 January 2013 (has links)
Thin film copper indium gallium selenide (CIGS) solar cells have exhibited single junction power conversion efficiencies above 20% and have been commercialized. The large scale production of CIGS solar cells, however, is hampered by the relatively high cost and poor stoichiometric control of coevaporating tertiary and quaternary semiconductors in high vacuum. To reduce the overall cost of production, CIGS nanocrystals with predetermined stoichiometry and crystal phase were synthesized in solution. Colloidal nanocrystals of CIGS provide a novel route for production of electronic devices. Colloidal nanocrystals combine the well understood device physics of inorganic crystalline semiconductors with the solution processability of amorphous organic semiconductors. This approach reduces the overall cost of CIGS manufacturing and can be used to fabricate solar cells on flexible and light-weight plastic substrates. As deposited CIGS nanocrystal solar cells were fabricated by ambient spray-deposition. Devices with efficiencies of 3.1% under AM1.5 illumination were fabricated. Examining the external and internal quantum efficiency spectrums of the devices reveal that in nanocrystal devices only the space charge region is actively contributing to the extracted photocurrent. The device efficiency of the as-deposited nanocrystal films is presently limited by the small crystalline grains (≈ 15 nm) in the absorber layer and the relatively large interparticle spacing due to the organic capping ligands on the nanocrystal surfaces. Small grains and large interparticle spacing limits high density extraction of electrons and holes from the nanocrystal film. A Mott-Schottky estimation of the space charge region reveals that only 50 nm depth of the nanocrystalline absorber is effectively contributing to the photogenerated current. One strategy to improve charge collection involves increased space charge region for extraction by vertical stacking of diodes. A much longer absorption path for the photons exists in the space charge region with the stacked devices, increasing the probability that the incident radiation is absorbed and then extracted. This method enables an increase in the collected short circuit current. The overall device efficiency, however, suffers with the increased series resistance and shunt conductance of the device. Growth of nanocrystal grains was deemed necessary to achieve power conversion efficiencies comparable to vapor deposited CIGS films. Simple thermal treatment of the nanocrystal layers did not contribute to the growth of the crystalline grain size. At the same time, because of the loss of selenium and increased trap density in the absorber layer, there was a measurable decrease in device efficiency with thermal processing. For increased grain size, the thermal treatment of the absorber layer took place in presence of compensating amounts of selenium vapor. The process of selenization, as it is called, took place at 500°C in a graphite box and led to an increase of the grain size from 15 nm to several microns in diameter. Devices with the increased grain size yielded efficiencies up to 5.1% under AM1.5 radiation. Mott-Schottky analysis of the selenized films revealed a reduction in doping density and a comparable increase in the space-charge region depth with the increased grain size. The increased collection combined with the much higher carrier mobility in the larger grains led to achieved Jsc values greater than 20 mA/cm2. Light beam induced current microscopy (LBIC) maps of the devices with selenized absorber layers revealed significant heterogeneity in photogenerated current. Distribution of current hotspots in the film corresponded with highly selenized regions of the absorber films. In an effort to improve the overall device efficiency, improvements in the selenization process are necessary. It was determined that the selenization procedure is dependent on the selenization temperature and processing environment. Meanwhile, the reactor geometry and nanocrystal inks composition played important roles in determining selenized film morphology and the resulting device efficiency. Further work is necessary to optimize all the parameters to improve device efficiency even further. / text
3

Thermal Storage and Transport in Colloidal Nanocrystal-Based Materials

January 2015 (has links)
abstract: The rapid progress of solution-phase synthesis has led colloidal nanocrystals one of the most versatile nanoscale materials, provided opportunities to tailor material's properties, and boosted related technological innovations. Colloidal nanocrystal-based materials have been demonstrated success in a variety of applications, such as LEDs, electronics, solar cells and thermoelectrics. In each of these applications, the thermal transport property plays a big role. An undesirable temperature rise due to inefficient heat dissipation could lead to deleterious effects on devices' performance and lifetime. Hence, the first project is focused on investigating the thermal transport in colloidal nanocrystal solids. This study answers the question that how the molecular structure of nanocrystals affect the thermal transport, and provides insights for future device designs. In particular, PbS nanocrystals is used as a monitoring system, and the core diameter, ligand length and ligand binding group are systematically varied to study the corresponding effect on thermal transport. Next, a fundamental study is presented on the phase stability and solid-liquid transformation of metallic (In, Sn and Bi) colloidal nanocrystals. Although the phase change of nanoparticles has been a long-standing research topic, the melting behavior of colloidal nanocrytstals is largely unexplored. In addition, this study is of practical importance to nanocrystal-based applications that operate at elevated temperatures. Embedding colloidal nanocrystals into thermally-stable polymer matrices allows preserving nanocrystal size throughout melt-freeze cycles, and therefore enabling observation of stable melting features. Size-dependent melting temperature, melting enthalpy and melting entropy have all been measured and discussed. In the next two chapters, focus has been switched to developing colloidal nanocrystal-based phase change composites for thermal energy storage applications. In Chapter 4, a polymer matrix phase change nanocomposite has been created. In this composite, the melting temperature and energy density could be independently controlled by tuning nanocrystal diameter and volume fractions. In Chapter 5, a solution-phase synthesis on metal matrix-metal nanocrytal composite is presented. This approach enables excellent morphological control over nanocrystals and demonstrated a phase change composite with a thermal conductivity 2 - 3 orders of magnitude greater than typical phase change materials, such as organics and molten salts. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2015
4

Single CdSe/CdS dot-in-rods fluorescence properties / Propriétés de fluorescence de nanocristaux de CdSe/CdS coeur-bâtonnets uniques

Manceau, Mathieu 03 December 2014 (has links)
Les nanocristaux colloïdaux synthétisés par voie chimique sont des sources prometteuses de lumière non-Classique à température ambiante. Ce travail est consacré à l'étude des propriétés optiques d'un type particulier de nanocristaux colloïdaux, appelé coeur-Bâtonnet, dans lequel un noyau de Seleniure de Cadmium (CdSe) sphérique est entouré d'une coquille de Sulfure de Cadmium (CdS) de forme cylindrique. En étudiant des particules de type coeur-Bâtonnet à température ambiante avec un microscope confocal, une caractérisation complète des propriétés optiques de ces émetteurs est réalisée. Nous étudions d'abord la statistique de clignotement de ces émetteurs. Nous montrons que les émetteurs coeur-Bâtonnet avec des coquilles épaisses se caractérisent par un clignotement réduit sur des échelles de temps courts, inférieurs à quelques millisecondes. Ensuite, une caractérisation détaillée de la statistique de photons des émetteurs coeur-Bâtonnet tenant compte du phénomène de clignotement est réalisée. La polarisation de l'émission est également étudié. Nous montrons que la polarisation d'émission peut être controlée en changeant la géométrie de la structure.Enfin, nous présentons également des expériences de couplage de ces émetteurs avec des dispositifs photoniques. Nous montrons la possibilité d'exciter un émetteur coeur-Bâtonnet en utilisant un nanofil d'oxyde de Zinc (ZnO). Nous montrons aussi que nous sommes en mesure d'orienter efficacement des nanoémetteurs uniques en utilisant la formation controlée de défauts dans des cristaux liquides. / Wet-Chemically synthesized colloidal nanocrystals are promising room temperature non-Classical light sources. This work is devoted to the study of the optical properties of a particular type of colloidal nanocrystals, called dot-In-Rods, in which a spherical Cadmium Selenide (CdSe) core is surrounded by a rod-Like Cadmium Sulfide (CdS) shell. By studying single dot-In-Rods at room-Temperature with a confocal microscope, a complete characterization of the optical, and especially quantum optical, properties of dot-In-Rods is provided for several geometrical parameters. We first study the blinking statistics of such emitters. We show that dot-In-Rods with thick shells are characterized by a reduced blinking that happens on fast timescales, typically on millisecond timescales. We then go on with a detailed characterization of the photon statistics of dot-In-Rods. A complete description of the photon statistics taking into account the blinking process is realized. The polarization of the emission is also investigated. We show that the emission polarization can be tuned by engineering the geometry. Finally, we also present experiments where we couple dot-In-Rods with various photonic devices. We demonstrate the possibility of excitation of a single emitter using a Zinc Oxyde (ZnO) nanowire. Using defects in liquid crystals, we also show that we are able to efficiently orientate single nanoemitters.
5

Characterization of Solution-processed Metal Chalcogenide Precursor, Thin Film, and Nanocomposite for Thermoelectricity

January 2020 (has links)
abstract: Satisfying the ever-increasing demand for electricity while maintaining sustainability and eco-friendliness has become a key challenge for humanity. Around 70% of energy is rejected as heat from different sectors. Thermoelectric energy harvesting has immense potential to convert this heat into electricity in an environmentally friendly manner. However, low efficiency and high manufacturing costs inhibit the widespread application of thermoelectric devices. In this work, an inexpensive solution processing technique and a nanostructuring approach are utilized to create thermoelectric materials. Specifically, the solution-state and solid-state structure of a lead selenide (PbSe) precursor is characterized by different spectroscopic techniques. This precursor has shown promise for preparing thermoelectric lead selenide telluride (PbSexTe1-x) thin films. The precursor was prepared by reacting lead and diphenyl diselenide in different solvents. The characterization reveals the formation of a solvated lead(II) phenylselenolate complex which deepens the understanding of the formation of these precursors. Further, using slightly different chemistry, a low-temperature tin(II) selenide (SnSe) precursor was synthesized and identified as tin(IV) methylselenolate. The low transformation temperature makes it compatible with colloidal PbSe nanocrystals. The colloidal PbSe nanocrystals were chemically treated with a SnSe precursor and subjected to mild annealing to form conductive nanocomposites. Finally, the room temperature thermoelectric characterization of solution-processed PbSexTe1-x thin films is presented. This is followed by a setup development for temperature-dependent measurements and preliminary temperature-dependent measurements on PbSexTe1-x thin films. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
6

Propriétés magnéto-optiques de nanocristaux de CdSe individuels à basse température / Magneto-optical properties of single CdSe nanocrystals at low temperature

Sinito, Chiara 16 December 2014 (has links)
Les applications émergentes des nanocristaux de CdSe nécessitent une compréhension approfondie des propriétés d’émission et de relaxation des sous-niveaux de structure fine de l’exciton de bord de bande. Cette thèse porte sur l’étude spectroscopique de nanocristaux individuels de CdSe présentant une photostabilité remarquable aux températures cryogéniques. La distribution spectrale de leur photoluminescence en fonction de la température et d’un champ magnétique appliqué fournit une signature précise des niveaux de plus basse énergie, révélatrice de leur morphologie et leur structure cristalline. Une méthode d’excitation de la luminescence de haute résolution spectrale a été développée pour sonder la totalité des niveaux de structure fine. Les raies de recombinaison des huit états ont ainsi été résolues pour la première fois dans une situation de levée totale de dégénérescence produite par l’anisotropie des nanocristaux et l’application d’un champ magnétique. L’excitation sélective des nanocristaux dans les niveaux supérieurs de la structure fine permet aussi d’étudier les mécanismes de relaxation de spin entre les branches excitoniques à trou lourd et à trou léger. Des canaux de relaxation sélectifs peuvent notamment être mis à profit pour préparer un nanocristal dans un niveau quantique unique.Des nanocristaux à double coque ont été conçus pour être efficacement photo-chargés, produisant une émission stable à partir de l’exciton chargé (trion) à la température de l’hélium liquide. La recombinaison du trion est purement radiative, avec une signature spectrale caractérisée par une raie d’émission sans phonon unique et intense. Sous champ magnétique, son éclatement en quatre composantes Zeeman livre les facteurs de Landé de l’électron et du trou. L’analyse des poids de ces composantes permet aussi de trouver le taux de relaxation de spin du trion et le signe de sa charge. Une inhibition remarquable de la relaxation de spin se produit lorsque l’éclatement Zeeman est inférieur à l’énergie du premier mode de phonons acoustiques du nanocristal. / The development of emerging applications of CdSe nanocrystals requires a detailed understanding of the band-edge exciton fine structure and relaxation pathways. This thesis is focused on cryogenic spectroscopy of single nanocrystal with a remarkable photostability. Photoluminescence spectra as a function of temperature and under external magnetic fields provide a spectral fingerprint of the low energy sub-levels, revealing the morphology and the crystal structure of individual nanocrystals. In order to probe the entire band-edge exciton fine structure, a high resolution luminescence excitation technique has been developed. Zeeman and anisotropy-induced splittings are used to reveal the entire 8-state band-edge fine structure, enabling complete comparison with band-edge exciton models. State selective excitation allows the preparation of single quantum states. It is also used to map the hole spin relaxation pathways between the fine structure sub-levels.Charged quantum dots provide an important platform for a range of emerging quantum technologies. Double shell CdSe nanocrystals are engineered to efficiently ionize at cryogenic temperatures, resulting in trion emission with a single sharp zero-phonon line and a near-unity quantum yield. Zeeman splitting of this line enables direct determination of electron and hole g-factors. Spin relaxation is observed in high fields, enabling identification of the trion charge. Importantly, we show that spin flips are completely inhibited for Zeeman splittings below the low-energy bound for confined acoustic phonons. This charac- teristic unique to colloidal quantum dots has potential applications in single spin coherent manipulation.
7

Study of Charge Separation in Quantum Dots and Their Assemblies

Rekha, M January 2017 (has links) (PDF)
This thesis reports a passive method for Fermi level regulation in quantum dot assemblies through ground state transfer between QDs. Here, ZnTe/CdS, and PbSe/CdSe core/shell QDs were used as valence band electron donors, while Cu containing CdS or ZnSe acts as electron acceptor QDs. Prior to study of ground state charge transfer process, this report discusses the synthesis of ZnTe/CdS, and PbSe/CdSe core shell QDs, which are later used to study charge transfer. Since ZnTe QDs are unstable and prone to oxidation, a CdS coated ZnTe QDs were used. Growing a CdS shell on ZnTe core is difficult because high reduction potential of Te. To overcome this problem, partially reduced sulphur is used for the synthesis of ZnTe/CdS. The peculiar optical properties exhibited by ZnTe/CdS also have been discussed. Even though the synthesis of Lead chalcogenide nanoparticles has been investigated previously, certain inconsistencies between the behavior expected from known mechanisms and empirical observations. An anion exchange mechanism is proposed and demonstrated to be involved in PbSe formation. Both ZnTe and PbSe based QDs are extensively used to study hole injection and copper containing QDs were used as acceptors. The charge transfer has been studied using optical spectroscopy. The structure and composition of the assemblies was identified using powder crystallography, electron-microscopy and composition analysis. The unique physical and chemical properties of these materials are exciting both fundamentally as well as from the point of view of applications.
8

EXPLORATION OF COLLOIDAL NANOCRYSTALS FOR ESTABLISHED AND EMERGING SEMICONDUCTOR MATERIALS

Daniel Christian Hayes (19918281) 24 October 2024 (has links)
<p dir="ltr">For reliable, facile, and user-friendly, solution-based synthesis of materials, the colloidal nanocrystal route has proven to be the method of choice for so many. The tunability that this process renders its users---from choice of precursors, solvent systems, and reaction conditions including temperature, pressure, and precursor addition order---is truly second to none. In their simplest form, these nanomaterials are usually comprised of an inorganic core of the desired material and an outer layer of surface-stabilizing molecules called ligands. These ligands provide colloidal stability and allow for the solution-processing of these materials for downstream usage in devices such as light-emitting diodes and photovoltaics, for example. In this thesis, the study and use of colloidal nanomaterials of Cu(In,Ga)(S,Se)<sub>2</sub> (CIGSSe), IIA-IVB-S<sub>3</sub> (including BaZrS<sub>3</sub> and SrZrS<sub>3</sub>), alkaline earth polysulfides (IIAS<sub>x</sub>; IIA = Sr, Ba; x = 2, 3), and other materials like Cu<sub>2</sub>GeS<sub>3</sub> and Cu<sub>2</sub>BaSnS<sub>4</sub>, for studies into the formation, colloidal stability, and fabrication into solar cells was performed.</p><p dir="ltr">More specifically, an experimental protocol was developed to fabricate high-quality CIGSSe nanoparticles with carbonaceous residues that are substantially reduced from traditional pathways. Traditional methods for synthesizing colloidal CIGS NPs often utilize heavy, long-chain organic species to serve as surface ligands which, during annealing in a Se/Ar atmosphere, leave behind an undesirable carbonaceous residue in the film. In an effort to minimize these residues, N-methyl-2-pyrrolidone (NMP) was used as an alternative surface ligand. Through the use of the NMP-based synthesis, a substantial reduction in the number of carbonaceous residues was observed in selenized films. Additionally, the fine-grain layer at the bottom of the film, a common observation of solution-processed films from organic media, was observed to exhibit a larger average grain size and increased chalcopyrite character over those of traditionally prepared films, presumably as a result of the reduced carbon content, allowing for superior growth. As a result, a gallium-free CuIn(S,Se)<sub>2</sub> device was shown to achieve power-conversion efficiencies of over 11% as well as possessing exceptional carrier generation capabilities with a short-circuit current density (J<sub>SC</sub>) of 41.6 mA/cm<sup>2</sup>, which is among the highest for the CIGSSe family of devices fabricated from solution-processed methods. It was shown that pre-selenized films of sulfide nanoparticles instead of selenide nanoparticles performed better as solar cells. While the exact mechanism is still under debate, it appears that the growth phase during selenization, which varies depending on the chalcogen present in the starting material plays an important role.</p><p dir="ltr">The IIA-IVB-S<sub>3</sub> system is just beginning to emerge as a material system shown to be capable of solution-based synthesis methods. This is primarily due to the extremely high oxophilicity of the IVB elements, Ti, Zr, and Hf, necessitating that extreme care and judicial use of inert environments be used to synthesize these materials via solution-based methods. In the IIA-IVB-S<sub>3</sub> system exists some of the chalcogenide perovskites, including BaZrS<sub>3</sub>, which are expected to have similar electronic properties to the well-known, high-performing halide perovskites, albeit much more stable, making them attractive prospects as novel semiconductor materials for optoelectronic applications. This work builds upon recent studies to show a general synthesis protocol, involving the use of carbon disulfide insertion chemistry to generate highly reactive precursors, that can be used towards the colloidal synthesis of numerous nanomaterials in the IIA-IVB-S<sub>3</sub> system, including BaTiS<sub>3</sub>, BaZrS<sub>3</sub>, BaHfS<sub>3</sub>, α-SrZrS<sub>3</sub> and α-SrHfS<sub>3</sub>. Additionally, we establish a method to reliably control the formation of the BaZrS<sub>3</sub> perovskite, a complication seen in previous literature where BaZrS<sub>3</sub> appears to exist as two different phases when synthesized via colloidal methods. The utility of these nanomaterials is also assessed via the measurement of their absorption properties and in the form of highly stable colloidal inks for the fabrication of homogenous, crack-free thin films of BaZrS<sub>3</sub>. In addition to the chalcogenide perovskites, the IIA-S system was also explored to better understand the solution-based formation of these materials and how the control of IIA polysulfides can be achieved. We show that the synthesis of these materials is strongly correlated to the reaction temperature and that the length of the S<sub>n</sub><sup>2-</sup> oligomer chain is the dependent variable. We also report on the synthesis of a previously unreported polymorph of SrS<sub>2</sub> which appears to take on the <i>C2/c</i> space group, the same as BaS<sub>2</sub>.</p><p dir="ltr">Finally, some discussion is also provided on the use of transmission electron microscopy (TEM) to analyze the crystal structure of materials. Some tips and techniques used throughout this thesis are summarized in this section.</p>

Page generated in 0.076 seconds