1 |
Characterization of Solution-processed Metal Chalcogenide Precursor, Thin Film, and Nanocomposite for ThermoelectricityJanuary 2020 (has links)
abstract: Satisfying the ever-increasing demand for electricity while maintaining sustainability and eco-friendliness has become a key challenge for humanity. Around 70% of energy is rejected as heat from different sectors. Thermoelectric energy harvesting has immense potential to convert this heat into electricity in an environmentally friendly manner. However, low efficiency and high manufacturing costs inhibit the widespread application of thermoelectric devices. In this work, an inexpensive solution processing technique and a nanostructuring approach are utilized to create thermoelectric materials. Specifically, the solution-state and solid-state structure of a lead selenide (PbSe) precursor is characterized by different spectroscopic techniques. This precursor has shown promise for preparing thermoelectric lead selenide telluride (PbSexTe1-x) thin films. The precursor was prepared by reacting lead and diphenyl diselenide in different solvents. The characterization reveals the formation of a solvated lead(II) phenylselenolate complex which deepens the understanding of the formation of these precursors. Further, using slightly different chemistry, a low-temperature tin(II) selenide (SnSe) precursor was synthesized and identified as tin(IV) methylselenolate. The low transformation temperature makes it compatible with colloidal PbSe nanocrystals. The colloidal PbSe nanocrystals were chemically treated with a SnSe precursor and subjected to mild annealing to form conductive nanocomposites. Finally, the room temperature thermoelectric characterization of solution-processed PbSexTe1-x thin films is presented. This is followed by a setup development for temperature-dependent measurements and preliminary temperature-dependent measurements on PbSexTe1-x thin films. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
|
2 |
Theoretical studies of compressed xenon oxides, tin selenide thermoelectrics, and defects in grapheneWorth, Nicholas Gower January 2018 (has links)
Enormous advances in computing power in recent decades have made it possible to perform accurate numerical simulations of a wide range of systems in condensed matter physics. At the forefront of this progress has been density functional theory (DFT), a very popular approach to tackling the complexity of quantum-mechanical systems that very often strikes a good balance between accuracy and tractability in light of the finite computational resources available to researchers. This thesis describes work utilising DFT methods to tackle two distinct problems. Firstly, the theoretical prediction of stable and metastable periodic structures under specified conditions using the ab initio random structure searching (AIRSS) method, which involves a large scale exploration of the Born-Oppenheimer energy surface, and secondly the use of a vibrational self-consistent field (VSCF) approach to investigate the effects of nuclear motion and anharmonicity in crystal systems, which involves a local exploration of the Born-Oppenheimer energy surface. The AIRSS crystal structure prediction method is here applied to a study of defect structures in graphene. It is also applied to a study of the xenon-oxygen binary system under a range of geological pressures (83–200 GPa). Novel xenon oxide structures are predicted and characterised theoretically. This work was carried out in collaboration with an experimental study of the system at the lower end of the pressure range. The VSCF approach to investigating anharmonicity is here applied to the study of tin selenide (SnSe), a material that has recently been shown to demonstrate consider- able promise as a thermoelectric material. In this thesis, the effects of the anharmonic nuclear motion on the vibrational and electronic properties of SnSe are investigated quantitatively.
|
3 |
Electronic Transport in Functional Materials and Two-Dimensional Hole SystemLiu, Shuhao 01 June 2018 (has links)
No description available.
|
Page generated in 0.052 seconds