Spelling suggestions: "subject:"coloração em grafos"" "subject:"cofloração em grafos""
1 |
Sobre problemas de lista coloração e a propriedade de selecionabilidade em grafosGama, Simone Ingrid Monteiro 19 April 2016 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-04-18T19:25:02Z
No. of bitstreams: 2
Dissertação - Simone I. M. Gama.pdf: 6174832 bytes, checksum: cb0205e2b98b47b323aebaecf952cff1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-04-18T19:25:17Z (GMT) No. of bitstreams: 2
Dissertação - Simone I. M. Gama.pdf: 6174832 bytes, checksum: cb0205e2b98b47b323aebaecf952cff1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-04-18T19:25:33Z (GMT) No. of bitstreams: 2
Dissertação - Simone I. M. Gama.pdf: 6174832 bytes, checksum: cb0205e2b98b47b323aebaecf952cff1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-04-18T19:25:33Z (GMT). No. of bitstreams: 2
Dissertação - Simone I. M. Gama.pdf: 6174832 bytes, checksum: cb0205e2b98b47b323aebaecf952cff1 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-04-19 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, the list coloring problem and choosability property in graphs are investigated.
List coloring is a generalization of the vertex coloring problem in graph, and as this
classic problem is to color a simple graph so that adjacent vertices have different colors,
but respecting the additional constraint thaht each vertex has a list of porrible colors to be
used. This problem has some variations as the (g;μ)-coloring, which involves sequential
lists with lower and upper bounds known. The k-choosability is to determine the smallest
size list k for which there is always a valid list coloring, whatever the distribution of
the list in the graph. Thus, we investigated the correlation between k-choosability and
(g;μ)-coloring, porposing the k-(g;μ)-choosability property. With this, we also analysed
some proof tecnhiques in choosability, applied to determine k-(g;μ)-choosability for specific
graphs are 3-(g;μ)-choosable and the technique of Marshal Hall, applied to prove
that complete bipartite graphs are 2-(g;μ)-choosable. The most general result, obtaines
throught a relatively simple formal proof, consisted to determine if a graph is k-colorable,
then this graph is algo k-(g;μ)-choosable, leaving to be Pp
2-complete for NP-complete.
Additionally, it was studied and implemented some algorithms to determine the list coloration
and k-choosability for simple general graphs. / Nesta dissertação, o problema da lista coloração e a propriedade da selecionabilidade
em grafos são abordados. Lista coloração é uma generalização do problema da coloração
de vértices em grafos, e tal como este problema clássico, consiste em colorir um grafo
simples de modo que vértices adjacentes possuam cores distintas, mas, respeitando- se a
restrição adicional de que cada vértice possui uma lista restrita de possíveis cores a serem
usadas. Tal problema possui algumas variações, como a (g;μ)-coloração, que envolve listas
sequenciais com limite inferior e superior conhecidos. A k-selecionabilidade consiste
em determinar o menor tamanho de lista k para o qual sempre há uma lista coloração,
seja qual for a distribuição de lista no grafo. Nesta dissertação, se investigou a correlação
entre a propriedade da k-selecionabilidade e a (g;μ)-coloração, sendo definida a propriedade
de k-(g;μ)-selecionabilidade. Com isto, foram também estudadas algumas técnicas
de prova em selecionabilidade, aplicadas para se determinar a k-(g;μ)-selecionabilidade
para classes específicas de grafos, como a técnica de degeneração em grafos, usada para
provar que grafos periplanares são 3-(g;μ)-selecionáveis e a técnica de Marshal Hall,
usada para provar que grafos bipartidos completos são 2-(g;μ)-selecionáveis. O resultado
mais geral, obtido através de uma prova formal, consistiu em determinar que se um grafo é
k-colorível, então tal grafo também é k-(g;μ)-selecionável, deixando de ser Pp
2-completo
para ser NP-completo. Adicionalmente, foram estudados e implementados alguns algoritmos
para determinar a lista coloração e k-selecionabilidade em grafos simples gerais
|
2 |
Modelos teóricos e algoritmos para a otimização da alocação de canais em redes móveis sem fioDias, Bruno Raphael Cardoso 20 March 2014 (has links)
Submitted by Geyciane Santos (geyciane_thamires@hotmail.com) on 2015-06-18T15:59:03Z
No. of bitstreams: 1
Dissertação - Bruno Raphael Cardoso Dias.pdf: 2590139 bytes, checksum: cd42989e41c3aa52c2f6debcdfbd565d (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-18T18:57:13Z (GMT) No. of bitstreams: 1
Dissertação - Bruno Raphael Cardoso Dias.pdf: 2590139 bytes, checksum: cd42989e41c3aa52c2f6debcdfbd565d (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-18T18:58:47Z (GMT) No. of bitstreams: 1
Dissertação - Bruno Raphael Cardoso Dias.pdf: 2590139 bytes, checksum: cd42989e41c3aa52c2f6debcdfbd565d (MD5) / Made available in DSpace on 2015-06-18T18:58:47Z (GMT). No. of bitstreams: 1
Dissertação - Bruno Raphael Cardoso Dias.pdf: 2590139 bytes, checksum: cd42989e41c3aa52c2f6debcdfbd565d (MD5)
Previous issue date: 2014-03-20 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The channel allocation problem is addressed, where, as a wireless mobile network
with transmission antennas distributed in the region of interest and one or more given track limited frequency discretized broadcast channels, is to promote allocation of such channels by the antennas in such a way to meet the demand for calls optimizing the use of resources, which in this case prioritized to optimize the use of channels allocated in an optimization problem Min-Max distribution channel - the Span -, where the highest allocated channel must be as small as possible. This problem has a increasingly important given the large demand growth and limiting technological resources of communication involved. The approach to the problem is Optimization Combinatorics and related fields. Therefore, a literature study is presented on the topic, focusing on mobile phones and networks based on cognitive radio networks. The From this, it is proposed new theoretical model for the problem representation using special stains on graphs, task scheduling on parallel machines resource constraints and geometry distances with constraint programming, and possible to identify specific characteristics of some application scenarios of the problem general. Based on these models, the developed algorithms are presented and implemented, and approximate methods based on local search with emphasis on meta-heuristic simulated annealing, and exact methods, involving branch-and-cut with IBM / ILOG CPLEX tool and, finally, hybrid methods, prune-branch-and-bound. The computational experiments are presented with a comparative analysis
of performance, either using classical literature instances, as set Philadelphia and its variants as well as artificial instances proposals to cover variants discussed, as well as larger involving network 70 to to 150 stations. The results validate the proposed theoretical models and algorithms developed and implemented, since, equal or better results to the literature were obtained with several great solutions proven, beyond theoretical discussion and variants proposals believed to strengthen the understanding of the problem and the related literature / O problema de alocação de canais é abordado, onde, dado uma rede móvel sem fio com antenas de transmissão distribuídas na região de interesse e dada uma ou mais faixa de frequência limitada discretizada em canais de transmissão, consiste em promover uma alocação de tais canais pelas antenas de tal modo a atender as chamadas em demanda otimizando o uso dos recursos, que neste caso priorizou-se a otimização do uso dos canais alocados, em um problema de otimização Min-Max da distribuição dos canais - o span -, onde o maior canal alocado deve ser o menor possível. Tal problema possui uma
importância cada vez maior dado o grande crescimento da demanda e a limitação dos recursos tecnológicos de comunicação envolvidos. A abordagem ao problema é de Otimização
Combinatória e áreas afins. Sendo assim, é apresentado um estudo da literatura sobre o tema, com enfoque em redes celulares e redes baseadas em rádios cognitivos. A partir disto, propõe-se novos modelos teóricos para representação do problema utilizando colorações especiais em grafos, escalonamento de tarefas em máquinas paralelas com restrições de recursos e geometria de distâncias com programação por restrições, sendo possível identificar características específicas de alguns cenários de aplicação do problema geral. Com base em tais modelos, são apresentados os algoritmos desenvolvidos
e implementados, sendo métodos aproximados, baseados em busca local com ênfase na meta-heurística simulated annealing, e métodos exatos, envolvendo branch-and-cut com a ferramenta IBM/ILOG CPLEX e, por fim, métodos híbridos, branch-prune-and-bound. Os experimentos computacionais realizados são apresentados com uma análise comparativa de desempenho, usando tanto instâncias clássicas da literatura, como o conjunto Philadelphia e suas variantes, como também instâncias artificiais propostas para contemplar variantes abordadas, bem como de maior tamanho, envolvendo redes entre 70 a 150 estações.
Os resultados obtidos validam os modelos teóricos propostos e os algoritmos desenvolvidos e implementados, uma vez que, resultados iguais ou melhores aos da literatura foram obtidos, com várias soluções ótimas comprovadas,além da discussão teórica e variantes propostas que se acredita robustecer o entendimento do problema e a literatura relacionada.
|
3 |
Modelagem matemática e aplicações do problema de coloração em grafosLozano, Daniele [UNESP] 17 January 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-01-17Bitstream added on 2014-06-13T20:17:29Z : No. of bitstreams: 1
lozano_d_me_sjrp.pdf: 1183878 bytes, checksum: 4a6bb33915f7d1702bf0df3808789aa1 (MD5) / Secretaria de Educação do Estado de São Paulo / O objetivo desse trabalho é apresentar o problema de coloração em grafos sob diferentes perspectivas. Caracterizamos o polinômio cromático de um grafo e enunciamos algumas de suas propriedades. Apresentamos duas formulações matemáticas para o problema de coloração de vértices e um método de solução para cada formulação. Apresentamos e discutimos propostas de atividades para o desenvolvimento de uma Oficina de Coloração para alunos do Ensino Médio e Fundamental. / In this work the graph coloring problem was presented under di erent perspectives. We define the chromatic polynomials of a graph and describe some of its properties. Furthermore, two solution methods for the vertex coloring problem, through integer programming formulation, has been presented. We propose and discuss some activities for the development of a Workshop for students of secondary school.
|
Page generated in 0.0669 seconds