Spelling suggestions: "subject:"geometria dde distância"" "subject:"geometria dde instâncias""
1 |
Álgebra de Clifford aplicada ao cálculo de estruturas moleculares / Clifford algebras applied to molecular structure calculationsAlves, Rafael Santos de Oliveira, 1982- 24 September 2018 (has links)
Orientador: Carlile Campos Lavor / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-09-24T19:32:19Z (GMT). No. of bitstreams: 1
Alves_RafaelSantosdeOliveira_D.pdf: 2213205 bytes, checksum: 67a1681eb02b103974e57e3047edc755 (MD5)
Previous issue date: 2013 / Resumo: O Problema de Geometria de Distâncias Moleculares (PGDM) consiste em encontrar uma imersão tridimensional de um grafo simples, não orientado, de forma que o peso nas arestas corresponda às distâncias inter-atômicas de uma molécula. Este é um problema de busca em um espaço contínuo, mas que pode ser discretizado sob algumas exigências, dando origem ao PGDM discretizado (PGDMD), que é solucionado usando informações sobre distâncias entre alguns átomos da molécula através de um algoritmo Branch and Prune (BP). Caso as distâncias sejam dadas por um conjunto de limites inferiores e superiores, temos um novo problema: o PGDMD intervalar (iPGDMD). A partir da interpretação geométrica deste último, propomos uma nova abordagem utilizando a Álgebra de Clifford a fim de tornar o algoritmo BP mais eficiente e de poder tratar algebricamente os problemas relacionados ao tratamento das distâncias intervalares / Abstract: The Molecular Distance Geometry Problem (MDGP) consists in finding a three dimensional embedding of simple, weighted, undirected graph such that the weight in the edges correspond to the inter-atomic distances of a molecule. This is a continuous search problem which can be discretized under some assumptions, yielding the Discretized MDGP (DMDGP), which is solved by a Branch and Prune (BP) algorithm using information about the distances among some atoms of the molecule. If the distances are given by a set of lower and upper bounds, a new problem arises: the interval DMDGP (iDMDGP). From a geometric interpretation of this problem, we propose a new approach, using Clifford Algebras, in order to improve the BP efficiency and treat algebraically the issues related to interval distances / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
2 |
Geometria de distâncias euclidianas e aplicações / Euclidean distance geometry and applicationsLima, Jorge Ferreira Alencar, 1986- 26 August 2018 (has links)
Orientadores: Carlile Campos Lavor, Tibérius de Oliveira e Bonates / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T15:11:50Z (GMT). No. of bitstreams: 1
Lima_JorgeFerreiraAlencar_D.pdf: 1109545 bytes, checksum: 086223c23c920a9abe0d3661769a6a7d (MD5)
Previous issue date: 2015 / Resumo: Geometria de Distâncias Euclidianas (GDE) é o estudo da geometria euclidiana baseado no conceito de distância. É uma teoria útil em diversas aplicações, onde os dados consistem em um conjunto de distâncias e as possíveis soluções são pontos em algum espaço euclidiano que realizam as distâncias dadas. O problema chave em GDE é conhecido como Problema de Geometria de Distâncias (PGD), em que é dado um inteiro K>0 e um grafo simples, não direcionado, ponderado G=(V,E,d), cujas arestas são ponderadas por uma função não negativa d, e queremos determinar se existe uma função (realização) que leva os vértices de V em coordenadas no espaço euclidiano K-dimensional, satisfazendo todas as restrições de distâncias dadas por d. Consideramos tanto problemas teóricos quanto aplicações da GDE. Em termos teóricos, demonstramos a quantidade exata de soluções de uma classe de PGDs muito importante para problemas de conformação molecular e, além disso, conseguimos condições necessárias e suficientes para determinar quando um grafo completo associado a um PGD é realizável e qual o espaço euclidiano com dimensão mínima para tal realização. Em termos práticos, desenvolvemos um algoritmo que calcula tal realização em dimensão mínima com resultados superiores a um algoritmo clássico da literatura. Finalmente, mostramos uma aplicação direta do PGD em problemas de escalonamento multidimensional / Abstract: Euclidean distance geometry (EDG) is the study of Euclidean geometry based on the concept of distance. This is useful in several applications, where the input data consists of an incomplete set of distances and the output is a set of points in some Euclidean space realizing the given distances. The key problem in EDG is known as the Distance Geometry Problem (DGP), where an integer K>0 is given, as well as a simple undirected weighted graph G=(V,E,d), whose edges are weighted by a non-negative function d. The problem consists in determining whether or not there is a (realization) function that associates the vertices of V with coordinates of the K-dimensional Euclidean space, in such a way that those coordinates satisfy all distances given by d. We considered both theoretical issues and applications of EDG. In theoretical terms, we proved the exact number of solutions of a subclass of DGP that is very important in the molecular conformation problems. Moreover, we described necessary and sufficient conditions for determining whether a complete graph associated to a DGP is realizable and the minimum dimension of such realization. In practical terms, we developed an algorithm that computes such realization, which outperforms a classical algorithm from the literature. Finally, we showed a direct application of DGP to multidimensional scaling / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
3 |
Modelos teóricos e algoritmos para a otimização da alocação de canais em redes móveis sem fioDias, Bruno Raphael Cardoso 20 March 2014 (has links)
Submitted by Geyciane Santos (geyciane_thamires@hotmail.com) on 2015-06-18T15:59:03Z
No. of bitstreams: 1
Dissertação - Bruno Raphael Cardoso Dias.pdf: 2590139 bytes, checksum: cd42989e41c3aa52c2f6debcdfbd565d (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-18T18:57:13Z (GMT) No. of bitstreams: 1
Dissertação - Bruno Raphael Cardoso Dias.pdf: 2590139 bytes, checksum: cd42989e41c3aa52c2f6debcdfbd565d (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-18T18:58:47Z (GMT) No. of bitstreams: 1
Dissertação - Bruno Raphael Cardoso Dias.pdf: 2590139 bytes, checksum: cd42989e41c3aa52c2f6debcdfbd565d (MD5) / Made available in DSpace on 2015-06-18T18:58:47Z (GMT). No. of bitstreams: 1
Dissertação - Bruno Raphael Cardoso Dias.pdf: 2590139 bytes, checksum: cd42989e41c3aa52c2f6debcdfbd565d (MD5)
Previous issue date: 2014-03-20 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The channel allocation problem is addressed, where, as a wireless mobile network
with transmission antennas distributed in the region of interest and one or more given track limited frequency discretized broadcast channels, is to promote allocation of such channels by the antennas in such a way to meet the demand for calls optimizing the use of resources, which in this case prioritized to optimize the use of channels allocated in an optimization problem Min-Max distribution channel - the Span -, where the highest allocated channel must be as small as possible. This problem has a increasingly important given the large demand growth and limiting technological resources of communication involved. The approach to the problem is Optimization Combinatorics and related fields. Therefore, a literature study is presented on the topic, focusing on mobile phones and networks based on cognitive radio networks. The From this, it is proposed new theoretical model for the problem representation using special stains on graphs, task scheduling on parallel machines resource constraints and geometry distances with constraint programming, and possible to identify specific characteristics of some application scenarios of the problem general. Based on these models, the developed algorithms are presented and implemented, and approximate methods based on local search with emphasis on meta-heuristic simulated annealing, and exact methods, involving branch-and-cut with IBM / ILOG CPLEX tool and, finally, hybrid methods, prune-branch-and-bound. The computational experiments are presented with a comparative analysis
of performance, either using classical literature instances, as set Philadelphia and its variants as well as artificial instances proposals to cover variants discussed, as well as larger involving network 70 to to 150 stations. The results validate the proposed theoretical models and algorithms developed and implemented, since, equal or better results to the literature were obtained with several great solutions proven, beyond theoretical discussion and variants proposals believed to strengthen the understanding of the problem and the related literature / O problema de alocação de canais é abordado, onde, dado uma rede móvel sem fio com antenas de transmissão distribuídas na região de interesse e dada uma ou mais faixa de frequência limitada discretizada em canais de transmissão, consiste em promover uma alocação de tais canais pelas antenas de tal modo a atender as chamadas em demanda otimizando o uso dos recursos, que neste caso priorizou-se a otimização do uso dos canais alocados, em um problema de otimização Min-Max da distribuição dos canais - o span -, onde o maior canal alocado deve ser o menor possível. Tal problema possui uma
importância cada vez maior dado o grande crescimento da demanda e a limitação dos recursos tecnológicos de comunicação envolvidos. A abordagem ao problema é de Otimização
Combinatória e áreas afins. Sendo assim, é apresentado um estudo da literatura sobre o tema, com enfoque em redes celulares e redes baseadas em rádios cognitivos. A partir disto, propõe-se novos modelos teóricos para representação do problema utilizando colorações especiais em grafos, escalonamento de tarefas em máquinas paralelas com restrições de recursos e geometria de distâncias com programação por restrições, sendo possível identificar características específicas de alguns cenários de aplicação do problema geral. Com base em tais modelos, são apresentados os algoritmos desenvolvidos
e implementados, sendo métodos aproximados, baseados em busca local com ênfase na meta-heurística simulated annealing, e métodos exatos, envolvendo branch-and-cut com a ferramenta IBM/ILOG CPLEX e, por fim, métodos híbridos, branch-prune-and-bound. Os experimentos computacionais realizados são apresentados com uma análise comparativa de desempenho, usando tanto instâncias clássicas da literatura, como o conjunto Philadelphia e suas variantes, como também instâncias artificiais propostas para contemplar variantes abordadas, bem como de maior tamanho, envolvendo redes entre 70 a 150 estações.
Os resultados obtidos validam os modelos teóricos propostos e os algoritmos desenvolvidos e implementados, uma vez que, resultados iguais ou melhores aos da literatura foram obtidos, com várias soluções ótimas comprovadas,além da discussão teórica e variantes propostas que se acredita robustecer o entendimento do problema e a literatura relacionada.
|
4 |
Explorando a dualidade em geometria de distâncias / Exploring the duality on distance geometryRezende, Germano Abud de, 1977- 25 August 2018 (has links)
Orientador: Carlile Campos Lavor / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T18:42:28Z (GMT). No. of bitstreams: 1
Rezende_GermanoAbudde_D.pdf: 1418033 bytes, checksum: 61d29b02274278ede5ffca797e26371a (MD5)
Previous issue date: 2014 / Resumo: A geometria de distâncias é o estudo da geometria baseado no conceito de distância. Ela é útil em várias aplicações, onde os dados de entrada consistem de um conjunto incompleto de distâncias, e a saída é um conjunto de pontos no espaço euclidiano, que realiza as distâncias dadas. No Problema de Geometria de Distâncias (DGP), é dado um inteiro K > 0 e um grafo simples, não direcionado, G = (V,E,d), cujas arestas são ponderadas por uma função não negativa d. Queremos determinar se existe uma função (realização) que leva os vértices de V em coordenadas no espaço euclidiano K-dimensional, satisfazendo todas as restrições de distâncias dadas por d. Um DGPk (com K fixado) está fortemente relacionado a um outro tipo de problema, que trata dos possíveis completamentos de uma certa matriz de distâncias euclidianas. Este último pode ser visto, em um certo sentido, como o "dual do primeiro problema". Neste trabalho, exploramos essa dualidade com a finalidade de propor melhorias no método Branch-and-Prune aplicado a uma versão discreta do DGPk / Abstract: Distance Geometry is the study of geometry based on the concept of distance. It is useful in many applications where the input data consists of an incomplete set of distances, and the output is a set of points in some Euclidean space which realizes the given distances. In the Distance Geometry Problem (DGP), it is given an integer K > 0 and a simple undirected weighted graph G = (V,E,d), whose edges are weighted by a non-negative function d. We want to determine if there is a (realization) function that associates the vertices of V with coordinates of the K-dimensional Euclidean space satisfying all distance constraints given by d. A DGPk (with K fixed) is closely related to another type of problem, which treats the possible completions of a certain Euclidean distance matrix. In some sense, this is the "dual" of the first problem. We explore this duality in order to improve the Branch-and-Prune method applied to a discrete version of the DGPk / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
5 |
Dividindo e conquistando com simetrias em geometria de distâncias / Divinding and conquering with symmetries in distance geometryFidalgo, Felipe Delfini Caetano, 1987- 26 August 2018 (has links)
Orientador: Carlile Campos Lavor / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:04:46Z (GMT). No. of bitstreams: 1
Fidalgo_FelipeDelfiniCaetano_D.pdf: 5383479 bytes, checksum: 8f7bf5142b44fa99ea2742f6183ee1c6 (MD5)
Previous issue date: 2015 / Resumo: Motivado por estudos em estruturas 3D de proteínas, biomoléculas imprescindíveis no estudo da vida, surgiu um problema chamado Discretizable Molecular Distance Geometry Problem (DMDGP) que provou ser NP-Difícil. Para resolvê-lo, existe um algoritmo da literatura, Branch & Prune (BP), que utiliza uma estratégia combinatória de exploração de uma árvore binária de soluções associada ao problema. Além disso, foram descobertas relações de simetria que permitem obter uma solução, a partir de outra, através de reflexões nos chamados vértices de simetria. Alguns pesquisadores passaram a realizar este trabalho em paralelo (ParallelBP), dividindo uma instância em sub-instâncias, resolvendo localmente com o BP (o que pode ser feito em duas direções) e unindo as sub-soluções com movimentos rígidos, com o intuito de determinar as soluções em menor tempo. Nossa proposta é fornecer uma estratégia Dividir-e-Conquistar para resolver o DMDGP, de modo a melhorar a abordagem em paralelo. Ela possui três estágios. Inicialmente, dividimos uma instância em sub-instâncias duas-a-duas sobrepostas através dos vértices de simetria. Depois, utiliza-se os chamados gaps para decidir a direção em que o BP deve fornecer a solução local. Por fim, utilizamos rotações baseadas na Álgebra de Quatérnios para combinar as sub-soluções em soluções factíveis / Abstract: Motived by studies in 3D structures of proteins, essential biomolecules for Life, arised a problem called Discretizable Molecular Distance Geometry Problem (DMDGP) which proved to be NP-Hard. Aiming to solve it, there is an algorithm in the literature, Branch & Prune (BP), which uses a combinatorial strategy of exploring a binary tree of solutions that is associated to the problem. Moreover, some symmetry relations have been discovered which allows the obtainance of one solution from the other one by means of reflections in the so-called symmetry vertices. Some researchers started to do this work using parallel computing (ParallelBP), dividing one instance into sub-instances, solving the problem locally with the BP (what can be done in two directions) and joining the sub-solutions with rigid movements, with the objective of determining the solutions in a smaller time. Our purpose, thus, is to provide a Divide-and-Conquer strategy to solve the DMDGP in order to improve the parallel version. It has three stages. Initially, the instance is divided into sub-instances two-by-two overlapping by means of the symmetry vertices. After, the so-called gaps are used to decide the direction that the BP ought to provide the local solution. Finally, we propose to use Quaternion Rotations to combine sub-solutions into feasible solutions / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
Page generated in 0.1031 seconds