Spelling suggestions: "subject:"combustion clynamics"" "subject:"combustion ctynamics""
11 |
Combustion Dynamics And Fluid Mechanics In Acoustically Perturbed Non-premixed Swirl-stabilized Flames.Idahosa, Uyi 01 January 2010 (has links)
The prevalence of gas turbines operating in primarily lean premixed modes is predicated on the need for lower emissions and increased efficiency. An enhancement in the mixing process through the introduction of swirl in the combustion reactants is also necessary for flame stabilization. The resulting lean swirling flames are often characterized by a susceptibility to feedback between velocity, pressure and heat release perturbations with a potential for unstable self-amplifying dynamics. The existing literature on combustion dynamics is predominantly dedicated to premixed flame configurations motivated by power generation and propulsive gas turbine applications. In the present research effort, an investigation into the response of atmospheric, non-premixed swirling flames to acoustic perturbations at various frequencies (fp = 0-315Hz) and swirl intensities (S=0.09 and S=0.34) is carried out. The primary objective of the research effort is to broaden the scope of fundamental understanding in flame dynamics in the literature to include non-premixed swirling flames. Applications of the research effort include control strategies to mitigate the occurrence of thermoacoustic instabilities in future power generation gas turbines. Flame heat release is quantitatively measured using a photomultiplier with a 430nm bandpass filter for observing CH* chemiluminescence which is simultaneously imaged with a phase-locked CCD camera. Acoustic perturbations are generated with a loudspeaker at the base of an atmospheric co-flow burner with resulting velocity oscillation amplitudes, u'/Uavg in the 0.03-0.30 range. The dependence of flame dynamics on the relative richness of the flame is investigated by studying various constant fuel flow rate flame configurations. The effect of varying fuel flow rates on the flame response is also examined using with dynamic time-dependent fuel supply rates over the data acquisition period. The Particle Image Velocimetry (PIV) method is used to study the isothermal flow field associated with acoustic pulsing. The acoustic impedance, wavelet analysis, Rayleigh criteria and phase conditioning methods are used to identify fundamental mechanisms common to highly responsive flame configurations.
|
12 |
Spatiotemporal Distribution of Soot Temperature for Fuel-Rich Flames under Unsteady Inlet Airflow ConditionsCakmakci, Arda 19 June 2015 (has links)
No description available.
|
13 |
Single Annular Combustor: Experimental investigations of Aerodynamics, Dynamics and EmissionsAbd El-Nabi, Bassam 08 April 2010 (has links)
No description available.
|
14 |
Combustion heat release effects on asymmetric vortex shedding from bluff bodiesCross, Caleb Nathaniel 29 August 2011 (has links)
Combustion systems utilizing bluff bodies to stabilize the combustion processes can experience oscillatory heat release due to the alternate shedding of coherent, von Kármán vortices under certain operating conditions. This phenomenon needs to be understood in greater detail, since unsteady burning due to vortex shedding can lead to combustion instabilities and flame extinction in practical combustion systems. The primary objective of this study was to elucidate the influence of combustion process heat release upon the Bénard-von Kármán (BVK) instability in reacting bluff body wakes. For this purpose, spatial and temporal heat release distributions in bluff body-stabilized combustion of liquid Jet-A fuel with high-temperature, vitiated air were characterized over a wide range of operating conditions. Upon comparing the spatial and temporal heat release distributions, the fuel entrainment and subsequent heat release in the near-wake were found to strongly influence the onset and amplitude of the BVK instability. As the amount of heat release in the near-wake decreased, the BVK instability increased in amplitude. This was attributed to the corresponding decrease in the local density gradient across the reacting shear layers, which resulted in less damping of vorticity due to gas expansion.
The experimental results were compared to the results of a parallel, linear stability analysis in order to further understand the influence of the combustion processes in the near-wake upon the wake instability characteristics. The results of this analysis support the postulate that oscillatory heat release due to BVK vortex shedding is the result of local absolute instability in the near-wake, which is eliminated only if the temperature rise across the reacting shear layers is sufficiently high. Furthermore, the results of this thesis demonstrate that non-uniform fuelling of the near-wake reaction zone increases the likelihood of absolutely unstable, BVK flame dynamics due to the possibility of near-unity products-to-reactants density ratios locally, especially when the reactants temperature is high.
|
15 |
Analysis Techniques for Characterizing High Power Turbulent Swirl FlamesRobert Z Zhang (6717671) 16 August 2019 (has links)
<div>High speed laser diagnostics are performed in two vastly differing swirl combustors at conditions relevant for industrial gas turbines. This high quality data can not only be used to elucidate key features of the flow field but also for validation of computational models simulating turbulence, chemistry, and their interactions. The first combustor is a piloted lean premixed prevaporized arrangement common in aviation applications. Fueling parameters are varied and sensitivity towards the pilot flame is observed. Conditioning to the stagnation line demonstrates increased fluctuations of shear and rotation in the inner shear layer when the pilot fueling is reduced.</div><div><br></div><div>The second flame has a simpler configuration with a single swirler and combusting natural gas. Thermoacoustic instability coupled to a helical precessing vortex core is found at certain conditions. Sparse Dynamic Mode Decomposition and phase averaging is applied to the velocity fields to create a three dimensional reconstruction of the helical vortex core in a non-precessing reference frame. Heat release is found to be correlated to the interaction strength of the central recirculation bubble and the helical vortex core. </div><div><br></div><div> </div><div>Finally, intermittent phenomena within a thermoacoustic instability are examined. The most prominent deviation is that the flame is observed to randomly lift and reattach. In addition, a convolutional neural network is employed to extract the morphology from otherwise qualitative OH species imaging. The average characteristics of the lifted and attached flame are compared and dramatic differences are found. All of the flow structures have been altered such as the precessing vortex core being greatly intensified during flame lift-off. Evaluating the average events before flame lift-off revealed the importance of conditions at the combustor inlet. However, evidence for a future reattachment event was only found with a less spatially confined perspective. In addition, transition to lift-off was very sudden while reattachment was far slower.</div>
|
16 |
Finite element analysis of acoustic wave transverse to longitudinal coupling during transverse combustion instabilityBlimbaum, Jordan Matthew 23 May 2012 (has links)
Velocity-coupled combustion instability is a major issue facing lean combustor design in modern gas turbine applications. In this study, we analyze the complex acoustic field excited by a transverse acoustic mode in an annular combustor. This work is motivated by the need to understand the various velocity disturbance mechanisms present in the flame region during a transverse instability event. Recent simulation and experimental studies have shown that much of the flame response during these transverse instabilities may be due to the longitudinal motion induced by the fluctuating pressure field above the nozzles. This transverse to longitudinal coupling has been discussed in previous work, but in this work it is given a robust acoustic treatment via computational methods in order to verify the mechanisms by which these two motions couple.
We will provide an in-depth discussion of this coupling mechanism and propose a parameter, Rz, also referred to as the Impedance Ratio, in order to compare the pressure/velocity relationship at the nozzle outlet to quasi one-dimensional theoretical acoustic approximations. A three-dimensional inviscid simulation was developed to simulate transversely propagating acoustic pressure waves, based on an earlier experiment designed to measure these effects. Modifications to this geometry have been made to account for lack of viscosity in the pure acoustic simulation and are discussed.
Results from this study show that transverse acoustic pressure excites significant axial motion in and around the nozzle over a large range of frequencies. Furthermore, the development of Rz offers a defined physical parameter through which to reference this important velocity-coupled instability mechanism. Therefore, this study offers an in-depth and quantifiable understanding of the instability mechanism caused by transversely propagating acoustic waves across a combustor inlet, which can be applied to greatly improve annular combustor design in future low-emissions gas turbine engines.
|
17 |
Response mechanisms of attached premixed flames to harmonic forcingShreekrishna 26 August 2011 (has links)
The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from non-premixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars.
In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics.
To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work.
The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the vicinity of typical screech frequencies in gas turbine combustors.
The nonlinear response problem is exclusively studied in the case of equivalence ratio coupling. Various nonlinearity mechanisms are identified, amongst which the crossover mechanisms, viz., stoichiometric and flammability crossovers, are seen to be responsible in causing saturation in the overall heat release magnitude of the flame. The response physics remain the same across various preheat temperatures and reactant pressures.
Finally, comparisons between the chemiluminescence transfer function obtained experimentally and the heat release transfer functions obtained from the reduced order model (ROM) are performed for lean, CH4/Air swirl-stabilized, axisymmetric V-flames. While the comparison between the phases of the experimental and theoretical transfer functions are encouraging, their magnitudes show disagreement at lower Strouhal number gains show disagreement.
|
18 |
APPLIED LASER DIAGNOSTICS TO INVESTIGATE FLOW-FLAME INTERACTIONS IN A SOLID FUEL RAMJET COMBUSTORWilliam Senior (17545854) 05 December 2023 (has links)
<p dir="ltr">This dissertation describes efforts in the development of an optically-accessible solid fuel ramjet combustion experiment and the application, and requisite modifications, of multiple laser-based diagnostics. These measurements target the characterization of the complex turbulent reacting flow physics in a multi-phase combustion environment representative of conditions within a solid fuel ramjet.</p><p dir="ltr"><br>First, dynamic flow-flame interactions were investigated in an optically-accessible solid fuel ramjet combustor. Experiments were performed with a single hydroxyl-terminated polybutadiene fuel slab located downstream of a backward-facing step in a rectangular chamber. To emulate flight-relevant combustor conditions, unvitiated heated air was directed through the combustion chamber with an inlet temperature of ∼655 K, chamber pressures of 450–690 kPa, and port Reynolds number of ∼500,000. 20 kHz OH∗-chemiluminescence and 10 kHz particle imaging velocimetry measurements were used to characterize the heat-release distribution and velocity field. Comparison between the mean OH∗ chemiluminescence images acquired at three flow conditions indicates reduction in flame height above the grain with increasing air mass flow rate. Dominant heat-release coherent structures in the statistically stationary flow are identified using the spectral proper orthogonal decomposition technique implemented on time-series of instantaneous images. The spatial mode shapes of the chemiluminescence and velocity field measurements indicated that the flow-flame interactions were dominated by vortex shedding generated at the backward facing step in the combustor, at Strouhal numbers of 0.06 – 0.10.</p><p dir="ltr"><br>Following this effort, a coherent anti-Stokes Raman scattering (CARS) laser system was assembled and aligned for measurements of the Q-branch ro-vibrational energy level structure of nitrogen using a coannular phase-matching scheme and frequency-shifted probe beam. These measurements were demonstrated in the model SFRJ combustion chamber operated with an inlet air temperature of 690 K and pressure of 0.59 MPa. Over 300 single-shot spectra were collected and fit for temperatures ranging from the core air flow to the combustion gases with a probe location situated above the redeveloping boundary layer region diffusion flame. A skewed temperature distribution was reported at the probe location, as expected from a region only intermittently exposed to hot combustion gases. Temperatures of 500-2000 K were fit to theory, indicating a requirement for high dynamic range measurements.</p><p dir="ltr"><br>A handful of shortcomings were identified in the application of the shifted-CARS technique to the luminous SFRJ flow-field and thus modifications were made to the CARS system for improved dynamic range, signal-to-noise ratio and signal-to-interference ratio. A dual-pump system provided simultaneous measurements of the Q-branch ro-vibrational energy level structure of nitrogen and pure-rotational energy level structure of nitrogen and oxygen. These spectra possessed ample features for accurate comparison to theory at temperatures of 600-2500 K, a typical range at flame locations within the highly dynamic SFRJ reacting flow. Additionally, an electro-optical shutter (EOS), comprised of a Pockels cell located between crossed-axis polarizers, was integrated into the CARS system. The use of the EOS enabled thermometry measurements in high luminosity flames through significant reduction of the background resulting from broadband flame emission. Temporal gating ≤100 nanoseconds along with an extinction ratio >10,000:1 was achieved using the EOS. Integration of the EOS enabled the use of an unintensified CCD camera for signal detection, improving upon the signal-to-noise ratio achievable with inherently noisy microchannel plate intensification processes, previously employed for short temporal gating.<br></p><p dir="ltr">Using this system, temperature and relative oxygen concentration scalar fields were measured in an optically accessible solid fuel ramjet (SFRJ) combustion chamber using coherent anti-Stokes Raman scattering (CARS). Additionally, planar laser-induced fluorescence measurements of the hydroxyl radical (OH-PLIF) were performed to spatially characterize flame location and provide context to the temperature measurements. The combustion chamber was operated with an inlet air temperature of 670 K, mass flowrate of 1.14 kg/s, and pressure of 0.57 MPa, conditions relevant to practical device operation. The dual-pump CARS system provided simultaneous measurements of the Q-branch ro-vibrational energy level structure of nitrogen and pure-rotational energy level structure of nitrogen and oxygen. These spectra possessed ample features for accurate comparison to theory at temperatures of 600-2500 K, a typical range at flame locations within the highly dynamic SFRJ reacting flow<br>and inherently track the relative oxygen concentration within the measurement volume. A skewed temperature distribution was reported at various probe locations, as expected from stochastic probing of dynamic reacting vortex structures. Comparison between CARS and OH-PLIF measurements within the flow impingement region indicated that the high temperature regions closely align with regions of high OH-PLIF intensity while the temperature standard deviation better matches the flame-surface density. The signal intensity distribution within instantaneous OH-PLIF images indicates transport of combustion products toward the grain, supported by the near-wall peak temperatures. This process is critical for the transport of energy to the grain such that additional fuel can be volatilized and mix with the air to support the flame.</p><p dir="ltr"><br>Finally, an ultra-fast CARS system has been designed and aligned for 1 kHz one-dimensional measurements of temperature by targeting the ro-vibrational Q-branch transitions of nitrogen. This effort seeks to develop a technique that can capture the hydrodynamics that drive the combustion in SFRJ and provide an intuition for the energy transport near the solid fuel wall of the SFRJ combustor through capturing instantaneous temperature profiles. The designed system utilized a 9 W high-energy regenerative amplifier with 30 fs duration pulses.<br>For the CARS measurement, the 4 W 800 nm output from the external compressor is used as the Stokes beam and a 0.5 W, 675 nm ouput from the TOPAS optical parametric amplifier (OPA) split to and used as the pump and probe beams. A chirping rod placed in the beam path of the probe beam was used to generate the picosecond pulse. Preliminary measurements have been acquired within room air and a laminar H2-Air nonpremixed flame. A discussion of the experimental challenges and remaining work is presented in this document.</p>
|
19 |
Single Cavity Trapped Vortex Combustor Dynamics : Experiments & SimulationsSinghal, Atul 07 1900 (has links)
Trapped Vortex Combustor (TVC) is a relatively new concept for potential use in gas turbine engines addressing ever increasing demands of high efficiency, low emissions, low pressure drop, and improved pattern factor. This concept holds promise for future because of its inherent advantages over conventional swirl-stabilized combustors. The main difference between TVC and a conventional gas turbine combustor is in the way combustion is stabilized. In conventional combustors, flame is stabilized because of formation of toroidal flow pattern in the primary zone due to interaction between incoming swirling air and fuel flow. On the other hand, in TVC, there is a physical cavity in the wall of combustor with continuous injection of air and fuel leading to stable and sustained combustion. Past work related to TVC has focussed on use of two cavities in the combustor liner. In the present study, a single cavity combustor concept is evaluated through simulation and experiments for applications requiring compact combustors such as Unmanned Aerial Vehicles (UAVs) and cruise missiles.
In the present work, numerical simulations were initially performed on a planar, rectangular single-cavity geometry to assess sensitivity of various parameters and to design a single-cavity TVC test rig. A water-cooled, modular, atmospheric pressure TVC test rig is designed and fabricated for reacting and non-reacting flow experiments. The unique features of this rig consist of a continuously variable length-to-depth ratio (L/D) of the cavity and optical access through quartz plates provided on three sides for visualization.
Flame stabilization in the single cavity TVC was successfully achieved with methane as fuel, and the range of flow conditions for stable operation were identified. From these, a few cases were selected for detailed experimentation. Reacting flow experiments for the selected cases indicated that reducing L/D ratio and increasing cavity-air velocity favour stable combustion. The pressure drop across the single-cavity TVC is observed to be lower as compared to conventional combustors. Temperatures are measured at the exit using thermocouples and corrected for radiative losses. Species concentrations are measured at the exit using an exhaust gas analyzer. The combustion efficiency is observed to be around 98-99% and the pattern factor is observed to be in the range of 0.08 to 0.13. High-speed imaging made possible by the optical access indicates that the overall combustion is fairly steady, and there is no major vortex shedding downstream. This enabled steady-state simulations to be performed for the selected cases. Insight from simulations has highlighted the importance of air and fuel injection strategies in the cavity. From a mixing and combustion efficiency standpoint, it is desirable to have a cavity vortex that is anti-clockwise. However, the natural tendency for flow over a cavity is to form a vortex that is clockwise. The tendency to blow-out at higher inlet flow velocities is thought to be because of these two opposing effects. This interaction helps improve mixing, however leads to poor flame stability unless cavity-air velocity is strong enough to support a strong anti-clockwise vortex in the cavity. This basic understating of cavity flow dynamics can be used for further design improvements in future to improve flame stability at higher inlet flow velocities and eventually lead to the development of a practical combustor.
|
Page generated in 0.1077 seconds