• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 2
  • 2
  • Tagged with
  • 31
  • 31
  • 12
  • 8
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ignition Delay of Non-Premixed Methane-Air Mixtures using Conditional Moment Closure (CMC)

El Sayed, Ahmad 09 1900 (has links)
Autoignition of non-premixed methane-air mixtures is investigated using first-order Conditional Moment closure (CMC). In CMC, scalar quantities are conditionally averaged with respect to a conserved scalar, usually the mixture fraction. The conditional fluctuations are often of small order, allowing the chemical source term to be modeled as a function of the conditional species concentrations and the conditional enthalpy (temperature). The first-order CMC derivation leaves many terms unclosed such as the conditional scalar dissipation rate, velocity and turbulent fluxes, and the probability density function. Submodels for these quantities are discussed and validated against Direct Numerical Simulations (DNS). The CMC and the turbulent velocity and mixing fields calculations are decoupled based on the frozen mixing assumption, and the CMC equations are cross-stream averaged across the flow following the shear flow approximation. Finite differences are used to discretize the equations, and a two-step fractional method is implemented to treat separately the stiff chemical source term. The stiff ODE solver LSODE is used to solve the resulting system of equations. The recently developed detailed chemical kinetics mechanism UBC-Mech 1.0 is employed throughout this study, and preexisting mechanisms are visited. Several ignition criteria are also investigated. Homogeneous and inhomogeneous CMC calculations are performed in order to investigate the role of physical transport in autoignition. Furthermore, the results of the perfectly homogeneous reactor calculations are presented and the critical value of the scalar dissipation rate for ignition is determined. The results are compared to the shock tube experimental data of Sullivan et al. The current results show good agreement with the experiments in terms of both ignition delay and ignition kernel location, and the trends obtained in the experiments are successfully reproduced. The results were shown to be sensitive to the scalar dissipation model, the chemical kinetics, and the ignition criterion.
12

Ignition Delay of Non-Premixed Methane-Air Mixtures using Conditional Moment Closure (CMC)

El Sayed, Ahmad 09 1900 (has links)
Autoignition of non-premixed methane-air mixtures is investigated using first-order Conditional Moment closure (CMC). In CMC, scalar quantities are conditionally averaged with respect to a conserved scalar, usually the mixture fraction. The conditional fluctuations are often of small order, allowing the chemical source term to be modeled as a function of the conditional species concentrations and the conditional enthalpy (temperature). The first-order CMC derivation leaves many terms unclosed such as the conditional scalar dissipation rate, velocity and turbulent fluxes, and the probability density function. Submodels for these quantities are discussed and validated against Direct Numerical Simulations (DNS). The CMC and the turbulent velocity and mixing fields calculations are decoupled based on the frozen mixing assumption, and the CMC equations are cross-stream averaged across the flow following the shear flow approximation. Finite differences are used to discretize the equations, and a two-step fractional method is implemented to treat separately the stiff chemical source term. The stiff ODE solver LSODE is used to solve the resulting system of equations. The recently developed detailed chemical kinetics mechanism UBC-Mech 1.0 is employed throughout this study, and preexisting mechanisms are visited. Several ignition criteria are also investigated. Homogeneous and inhomogeneous CMC calculations are performed in order to investigate the role of physical transport in autoignition. Furthermore, the results of the perfectly homogeneous reactor calculations are presented and the critical value of the scalar dissipation rate for ignition is determined. The results are compared to the shock tube experimental data of Sullivan et al. The current results show good agreement with the experiments in terms of both ignition delay and ignition kernel location, and the trends obtained in the experiments are successfully reproduced. The results were shown to be sensitive to the scalar dissipation model, the chemical kinetics, and the ignition criterion.
13

Diesel Combustion Modeling and Simulation for Torque Estimation and Parameter Optimization

Jezek, Christoffer, Jones, Fredrik January 2008 (has links)
<p>The current interest regarding how to stop the global warming has put focus on the automobile industry and forced them to produce vehicles/engines that are more environmental friendly. This has led to the development of increasingly complex controlsystem of the engines. The introduction of common-rail systems in regular automotives increased the demand of physical models that in an accurate way can describe the complex cycle within the combustion chamber. With these models implemented it is possible to test new strategies on engine steering in a cost- and time efficient way.</p><p>The main purpose with this report is to, build our own model based on the existing theoretical models in diesel engine combustion. The model has then been evaluated in a simulation environment using Matlab/Simulink. The model that has been implemented is a multi-zone type and is able to handle multiple injections.</p><p>The model that this thesis results in can in a good way predict both pressure and torque generated in the cylinder. More investigation in how the parameter settings behave in other work-points must be done to enhance the models accuracy. There is also some work left to do in the validation of the model but to make this possible more experimental data must be accessible.</p>
14

Diesel Combustion Modeling and Simulation for Torque Estimation and Parameter Optimization

Jezek, Christoffer, Jones, Fredrik January 2008 (has links)
The current interest regarding how to stop the global warming has put focus on the automobile industry and forced them to produce vehicles/engines that are more environmental friendly. This has led to the development of increasingly complex controlsystem of the engines. The introduction of common-rail systems in regular automotives increased the demand of physical models that in an accurate way can describe the complex cycle within the combustion chamber. With these models implemented it is possible to test new strategies on engine steering in a cost- and time efficient way. The main purpose with this report is to, build our own model based on the existing theoretical models in diesel engine combustion. The model has then been evaluated in a simulation environment using Matlab/Simulink. The model that has been implemented is a multi-zone type and is able to handle multiple injections. The model that this thesis results in can in a good way predict both pressure and torque generated in the cylinder. More investigation in how the parameter settings behave in other work-points must be done to enhance the models accuracy. There is also some work left to do in the validation of the model but to make this possible more experimental data must be accessible.
15

AN EVALUATION OF NITROGEN OXIDE EMISSION FROM A LIGHT-DUTY HYBRID-ELECTRIC VEHICLE TO MEET U.S.E.P.A. REQUIREMENTS USING A DIESEL ENGINE

Paciotti, Robert Neil 13 September 2007 (has links)
No description available.
16

Combustion Kinetics of Advanced Biofuels

Barari, Ghazal 01 January 2015 (has links)
Use of biofuels, especially in automotive applications, is a growing trend due to their potential to lower greenhouse gas emissions from combustion. Ketones are a class of biofuel candidates which are produced from cellulose. However, ketones received rather scarce attention from the combustion community compared to other classes such as, alcohols, esters, and ethers. There is little knowledge on their combustion performance and pollutant generation. Hence their combustion chemistry needs to be investigated in detail. Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. A detailed understanding of the combustion kinetics of the oxidation of DIPK in advanced engines such as, the homogeneous charge compression ignition (HCCI) engine is warranted. This dissertation concentrates on the combustion kinetics of DIPK over a wide range of temperature and pressure with a focus on HCCI engine application. An existing DIPK kinetic mechanism has been reviewed and a single zone HCCI engine model has been modeled and validated against recent experimental data from Sandia National Lab. Therefore different HCCI modeling assumptions were tested and the DIPK reaction mechanism was modified with missing reactions and the required thermochemical data. As a result, the HCCI pressure trace, heat release rate and reactivity have been improved. In order to improve the ignition delay time simulation results, the low temperature oxidation of DIPK was studied as the fuel chemistry effects on the autoignition behavior becomes important in low temperature. Therefore DIPK low temperature oxidation experimental data was obtained from the synchrotron photoionization experiments conducted at the Advanced Light Source (ALS) so that the primary products as well as the dominant oxidation pathways are identified. Furthermore, the aldehydes oxidation, as a result of partial or incomplete combustion and as the primary stable intermediate products in oxidation and pyrolysis of biofuel were studied at low temperature in ALS. A high temperature reaction mechanism was created using the reaction class approach. The reaction mechanism for DIPK was improved using the experimental data along with quantum chemical calculation of activation energies and barriers as well as vibrational modes for the important reactions identified in ALS experiment. The rate constants for important reactions were calculated based on modified Arrhenius equation. DIPK oxidation and pyrolysis were studied at high temperature and pressure using UCF shock tube. The ignition delay times as well as the product (methane) time histories were investigated and used as validation targets for the new model.
17

Hydrogen-Methane combustion modeling in the burner of the SGT-800 Siemens Energy gas turbine

Bozikis, Nikolaos January 2022 (has links)
Industrial gas turbines constitute an integral part of today’s electricalpower production infrastructure. Reacting gas flows in these machines arevery interesting and complex in nature since they exhibit highly turbulentbehaviour which is strongly coupled to the chemical reaction dynamics.Thus developing accurate CFD models for such flows while keeping thecomputational expense reasonable is a non-trivial task. In this studyLarge-Eddy simulations of hydrogen-methane fuel mixture combustion inthe SGT800’s (Siemens Energy Gas turbine 800) burner, in atmosphericconditions are performed using the CFD code Starccm+ (versions 16.04and 16.06).
18

Statistical Analysis of the Cellular Structure in Normal and Oblique Detonation Waves

Cideme, Robyn 01 January 2024 (has links) (PDF)
The advent of detonation-based propulsion systems represents an opportunity for more sustainable combustion processes and hypersonic travel. In regular detonations, some yet to be resolved instabilities are attributed to the propagation and collision of triple points, formed at the intersection of a Mach stem, an incident shock and a transverse wave. Over time, the tracks observed by these points form a structure made of diamond-shaped cells. Ultimately, The ability to sustain these instabilities plays a key role in the propagation of detonations. The present work unveils the dynamics of gaseous detonations at a sub-cellular level. The experiments are conducted with hydrogen fuel which is of great potential for detonation engine applications. The hydrogen-oxygen mixtures are held at stoichiometry and the nitrogen dilution in oxygen is varied from 30% to 70%. This allows to observe the effects of activation energy through the dilution on the sub-cellular wave dynamics. Measurements of cell sizes and wave velocity are reported through shadowgraph imaging. A new methodology is developed for the simultaneous resolution of the velocity field and cellular structure. The statistical analysis is made possible due to the design of a fully automated detonation facility. The experiments are conducted in a thin channel to minimize gradients in the third direction and confine the detonation cells to a plane. The results in cell sizes are in good agreement with the literature and expand the conditions reported thus far. Local observations of the velocity within the cells are used to explain the regularity of the overall wave speed, found to increase at lower dilution. Lastly, high fidelity simulations are conducted to model the cellular structure in hydrogen-air oblique detonation waves. Similarly to the experiments, the velocity field is extracted along the detonation cells and reveals the effects of wave curvature on triple point dynamics.
19

Pyrolysis and Flamelet Model for Polymethyl Methacrylate in Solid Fuel Sc(ramjet) Combustors

Pace, Henry Rogers 28 October 2024 (has links)
Scramjets have been identified as a potential long-term replacement for rocket and ramjet propulsion systems due to their enhanced performance at high Mach numbers. The introduction of solid fuels in these scramjet systems allows for shaping of the solid fuel cavity by additive manufacturing and introduces the possibility of enhancing combustion rates and stability. The present investigation aims to develop a coupled, high-order computational model to study the combustion of solid fuel scramjets. The primary objectives are to identify the effects of changing geometry on combustion and to better characterize the combustion process and flow patterns within a solid fuel scramjet engine. The high-Mach number of the air inflow over a scramjet cavity introduces a strong coupling between fluid dynamics, combustion, and regression time scales. Existing models often use simplified treatments of melt-layer conditions and combustion models that over-predict experimental rates, along with highly dissipative numerical schemes that inhibit the study of thermo-acoustic interactions between coherent pressure waves and the burning walls of the cavity. These limitations in current models suggest the need for a Navier-Stokes solver based on a high-order, discontinuous Galerkin method, incorporating melt layer equations and enhanced combustion manifolds. These manifolds should account for the effects of pressure and high oxidizer temperatures on flamelet dynamics. The focus is on modeling the flow field with accurate chemical heat release and residence time, to better study the effects of heat flux on the solid surface and the resulting coupling. An investigation of solid fuel scramjets was performed, and the numerical methodology with which the problem was tackled is described. A novel combustion mechanism was developed using a counterflow burner to study the combustion and regression of solid model fuel polymethyl methacrylate (PMMA). The diffusion flame between the fuel and oxidizer was studied numerically using a solid fuel decomposition and melt layer model to simulate convection and pyrolysis of the material. This model was validated using new experimental data as well as previously published works. The foam layer parameters are critical to the success of the validation. Results showed that the increased residence time of the gas in the bubbles facilitates the fuel breakdown. Fully coupled fuel injection and solid fuel surface monitoring was implemented based on this counterflow model and was a function of heat flux. Fuel regression was handled using adaptive control points for a B-Spline basis that updates based on surface movement. This methodology was used due to its resilience against the creation of surface discontinuities likely to result from large temperature gradients during combustion. Fourth-order computational simulations of ramjet combustion without regressing fuel walls using an in-house Discontinuous Galerkin approach were performed with a fully conjugate solution for the thermal wave in the solid. Results in ramjet geometries showed the turbulent combustion strongly affects the heat feedback to the walls and thus increases both the regression and fuel injection rates. Scramjet geometries were also simulated using the flamelet-progress variable approach in two different oxidizer conditions. All of these simulations showed strong agreement with experimental data and helped to uncover flame holding characteristics of the scramjet cavities and the strong coupling between the recirculation region and pyrolysis of fuel. The analysis has led to a better understanding of the effects of solid fuel scramjet geometries on mixing, enhanced modeling of acoustic instabilities in solid fuel air-breathing propulsion, and improved fuel chemistry modeling. It has been shown that cavity design significantly influences heat transfer to the solid fuel in both ramjet and scramjet conditions. The presence and thickness of the melt layer will guide designs that aim to reduce or enhance mechanical removal of fuel. Additionally, ramjet results indicate that longer cavities can couple with acoustics to induce self-excited conditions, leading to increased heat transfer to the solid. The importance of self-sustained instability and its coupling with melt layer fuel injection will contribute to improved acoustic stability. Developing pressure/temperature-dependent manifolds and melt layer models will advance our understanding of solid fuel supersonic combustion and its effects on phenomena such as blowout, fuel residence time, and solid fuel dual-mode transition. / Doctor of Philosophy / Scramjets, a type of high-speed jet engine, could one day replace rockets due to their efficiency at very high speeds. By introducing solid fuels into these engines, researchers can use advanced manufacturing techniques to shape fuel cavities, potentially enhancing the engine's performance. This study focuses on developing a sophisticated computational model to understand how changes in engine geometry affect the combustion process in solid fuel scramjets. The research aims to better understand the complex interactions between airflow, combustion, and fuel consumption, with the ultimate goal of improving engine design. The findings from this research provide valuable insights into how different scramjet designs impact fuel combustion. For instance, the design of the fuel cavity can significantly affect heat transfer, influencing the efficiency and stability of the engine. The study also highlights the importance of understanding the interaction between airflow and fuel injection, which is critical for optimizing engine performance and ensuring reliable operation at high speeds. Overall, this research advances our understanding of solid fuel scramjets and contributes to the development of more efficient and stable high-speed propulsion systems. By improving our ability to model and predict the behavior of these engines, the findings will guide future designs, potentially leading to more effective and reliable scramjets for various applications, including space exploration and high-speed flight.
20

Computational And Experimental Studies On Flameless Combustion Of Gaseous Fuels

Sudarshan Kumar, * 07 1900 (has links) (PDF)
No description available.

Page generated in 0.1097 seconds