Spelling suggestions: "subject:"compartment 3dmodeling"" "subject:"compartment bymodeling""
1 |
Design and Implementation of Convex Analysis of Mixtures Software SuiteMeng, Fan 10 September 2012 (has links)
Various convex analysis of mixtures (CAM) based algorithms have been developed to address real world blind source separation (BSS) problems and proven to have good performances in previous papers. This thesis reported the implementation of a comprehensive software CAM-Java, which contains three different CAM based algorithms, CAM compartment modeling (CAM-CM), CAM non-negative independent component analysis (CAM-nICA), and CAM non-negative well-grounded component analysis (CAM-nWCA). The implementation works include: translation of MATLAB coded algorithms to open-sourced R alternatives. As well as building a user friendly graphic user interface (GUI) to integrate three algorithms together, which is accomplished by adopting Java Swing API.
In order to combine R and Java coded modules, an open-sourced project RCaller is used to handle the establishment of low level connection between R and Java environment. In addition, specific R scripts and Java classes are also implemented to accomplish the tasks of passing parameters and input data from Java to R, run R scripts in Java environment, read R results back to Java, display R generated figures, and so on. Furthermore, system stream redirection and multi-threads techniques are used to build a simple R messages displaying window in Java built GUI.
The final version of the software runs smoothly and stable, and the CAM-CM results on both simulated and real DCE-MRI data are quite close to the original MATLAB version algorithms. The whole GUI based open-sourced software is easy to use, and can be freely distributed among the communities. Technical details in both R and Java modules implementation are also discussed, which presents some good examples of how to develop software with both complicate and up to date algorithms, as well as decent and user friendly GUI in the scientific or engineering research fields. / Master of Science
|
2 |
Quantitative methods for tumor imaging with dynamic PET / Kvantitativa metoder för tumöravbildning med dynamisk PETHäggström, Ida January 2014 (has links)
There is always a need and drive to improve modern cancer care. Dynamic positron emission tomography (PET) offers the advantage of in vivo functional imaging, combined with the ability to follow the physiological processes over time. In addition, by applying tracer kinetic modeling to the dynamic PET data, thus estimating pharmacokinetic parameters associated to e.g. glucose metabolism, cell proliferation etc., more information about the tissue's underlying biology and physiology can be determined. This supplementary information can potentially be a considerable aid when it comes to the segmentation, diagnosis, staging, treatment planning, early treatment response monitoring and follow-up of cancerous tumors. We have found it feasible to use kinetic parameters for semi-automatic tumor segmentation, and found parametric images to have higher contrast compared to static PET uptake images. There are however many possible sources of errors and uncertainties in kinetic parameters obtained through compartment modeling of dynamic PET data. The variation in the number of detected photons caused by the random nature of radioactive decay, is of course always a major source. Other sources may include: the choice of an appropriate model that is suitable for the radiotracer in question, camera detectors and electronics, image acquisition protocol, image reconstruction algorithm with corrections (attenuation, random and scattered coincidences, detector uniformity, decay) and so on. We have found the early frame sampling scheme in dynamic PET to affect the bias and uncertainty in calculated kinetic parameters, and that scatter corrections are necessary for most but not all parameter estimates. Furthermore, analytical image reconstruction algorithms seem more suited for compartment modeling applications compared to iterative algorithms. This thesis and included papers show potential applications and tools for quantitative pharmacokinetic parameters in oncology, and help understand errors and uncertainties associated with them. The aim is to contribute to the long-term goal of enabling the use of dynamic PET and pharmacokinetic parameters for improvements of today's cancer care. / Det finns alltid ett behov och en strävan att förbättra dagens cancervård. Dynamisk positronemissionstomografi (PET) medför fördelen av in vivo funktionell avbilning, kombinerad med möjligheten att följa fysiologiska processer över tiden. Genom att därtill tillämpa kinetisk modellering på det dynamiska PET-datat, och därigenom skatta farmakokinetiska parametrar associerade till glukosmetabolism, cellproliferation etc., kan ytterligare information om vävnadens underliggande biologi och fysiologi bestämmas. Denna kompletterande information kan potentiellt vara till stor nytta för segmentering, diagnos, stadieindelning, behandlingsplanering, monitorering av tidig behandlingsrespons samt uppföljning av cancertumörer. Vi fann det möjligt att använda kinetiska parametrar för semi-automatisk tumörsegmentering, och fann även att parametriska bilder hade högre kontrast jämfört med upptagsbilder från statisk PET. Det finns dock många möjliga källor till osäkerheter och fel i kinetiska parametrar som beräknats genom compartment-modellering av dynamisk PET. En av de största källorna är det radioaktiva sönderfallets slumpmässiga natur som orsakar variationer i antalet detekterade fotoner. Andra källor inkluderar valet av compartment-modell som är lämplig för den aktuella radiotracern, PET-kamerans detektorer och elektronik, bildtagningsprotokoll, bildrekonstruktionsalgoritm med tillhörande korrektioner (attenuering, slumpmässig och spridd strålning, detektorernas likformighet, sönderfall) och så vidare. Vi fann att tidssamplingsschemat för tidiga bilder i dynamisk PET påverkar både fel och osäkerhet i beräknade kinetiska parametrar, och att bildkorrektioner för spridd strålning är nödvändigt för de flesta men inte alla parametrar. Utöver detta verkar analytiska bildrekonstruktionsalgoritmer vara bättre lämpade för tillämpningar som innefattar compartment-modellering i jämförelse med iterativa algoritmer. Denna avhandling med inkluderade artiklar visar möjliga tillämpningar och verktyg för kvantitativa kinetiska parametrar inom onkologiområdet. Den bidrar också till förståelsen av fel och osäkerheter associerade till dem. Syftet är att bidra till det långsiktiga målet att möjliggöra användandet av dynamisk PET och farmakokinetiska parametrar för att förbättra dagens cancervård.
|
3 |
Quantification of Pharmacokinetics in Small Animals with Molecular Imaging and Compartment Modeling AnalysisFang, Yu-Hua 02 April 2009 (has links)
No description available.
|
4 |
A Bayesian Hierarchical Model for Studying Inter-Occasion and Inter-Subject Variability in PharmacokineticsLi, Xia 19 April 2011 (has links)
No description available.
|
5 |
A Quantitative Manganese-Enhanced MRI Method For In Vivo Assessment Of L-Type Calcium Channel Activity In HeartLi, Wen 15 April 2011 (has links)
No description available.
|
Page generated in 0.1031 seconds