Spelling suggestions: "subject:"complexes numbers"" "subject:"2complexes numbers""
1 |
O corpo dos números complexos e uma proposta de abordagem no ensino médio / The complexes numbers field and a proposition approach in high schoolSouza Filho, Carlos Silveira de 13 June 2019 (has links)
Nesta dissertação abordamos o conjunto dos números complexos, apresentando sua forma algébrica e geométrica, demonstrando que se trata de um conjunto com estrutura algébrica de corpo. Apresentamos também as características de rotação e homotetia da operação de multiplicação, a contextualização histórica e finalizamos com uma proposta de abordagem para o ensino médio. Vemos também a impossibilidade de realizar rotação em três dimensões culminando com a criação dos quatérnios. / In this masters thesis we discuss the complex numbers set, showing its algebraic and geometric forms, demonstrating which it is a set with algebraic structure of field. We also presente the rotation characteristics and homothety of multiplication operation, the historical contextualization and we finalized with an approach proposal for the high school. We also see the impossibility of performing the rotation in three dimensions resulting the generation of quaternions.
|
2 |
Funções e equações polinomiais comportamento da função do 3o grau / Polynomial functions and equations functions behavior of 3rd gradeQueiroz, Cleber da Costa 22 March 2013 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-22T11:18:05Z
No. of bitstreams: 2
Queiroz, Cleber da Costa.pdf: 1949775 bytes, checksum: fb4f5a0a7954a1b830a3614a3d55d110 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-22T11:29:10Z (GMT) No. of bitstreams: 2
Queiroz, Cleber da Costa.pdf: 1949775 bytes, checksum: fb4f5a0a7954a1b830a3614a3d55d110 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-22T11:29:10Z (GMT). No. of bitstreams: 2
Queiroz, Cleber da Costa.pdf: 1949775 bytes, checksum: fb4f5a0a7954a1b830a3614a3d55d110 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-03-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This paper aims to study the algebric methods to solve polynomial equations, with a
deeper study about 3rd grade polynomial equations. It firstly broaches the historical aspects
about polynomial functions by mentioning some mathematicians who collaborated
to the obtainment of these resolutive methods. One chapter is designated to the study of
complexes numbers and polynomial that have a great importance to theme development.
The objective was not to deepen in the study of complexes numbers and polynomial, but
to put in relief the definitions, properties and theorems that are considerable to the paper
base, once that a polynomial equation has at least a complex root (Fundamental Theorem
of Algebra) and that we always use the knowledge about the polynomial equations. By
the end, resolutive methods for polynomial equations until 4rd grade are presented, emphasizing
Cardano’s Formule and the algebric method for the 4rd grade equation, besides
making a study about the relation between the coefficient and the roots of the 3rd grade
equation, analysis of 3rd grade equation roots and the study of the 3rd grade function’s
graphic. / Este trabalho tem por objetivo estudar os métodos algébricos para resolução das equações
polinomiais onde destinamos um estudo mais aprofundado para as equações polinomiais
do 3o grau. Inicialmente fazemos uma abordagem dos aspectos históricos relacionados
às funções polinomiais citando alguns dos matemáticos que colaboraram para obtenção
desses métodos resolutivos. Destinamos um capítulo ao estudo dos números complexos
e polinômios, os quais são de fundamental importância para o desenvolvimento do tema.
Nosso objetivo não foi de aprofundar o estudo de números complexos e polinômios, mas
sim destacar as definições, propriedades e teoremas mais relevantes para a fundamentação
do trabalho, visto que uma equação polinomial possui pelo menos uma raiz complexa
(Teorema Fundamental da Álgebra) e que sempre utilizamos os conhecimentos a respeito
das equações polinomiais. Por fim, mostramos métodos resolutivos para equações polinomiais
até o grau 4, destacando a Fórmula de Cardano e o método algébrico para equação
do 4o grau, além de fazer um estudo sobre a relação entre os coeficientes e as raízes da
equação do 3o grau, análise das raízes da equação do 3o grau e estudo sobre o gráfico da
função do 3o grau.
|
Page generated in 0.0483 seconds