Spelling suggestions: "subject:"composite materials"" "subject:"eomposite materials""
451 |
Calculation of skin-stiffener interface stresses in stiffened composite panelsCohen, David January 1987 (has links)
A method for computing the skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The finite-element analysis is standard, while the elasticity solution is based on an eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be valid in the local flange termination region and is coupled with the finite-element analysis using collocation of stresses on the local region boundaries. In the first part of the investigation the accuracy and convergence of the local elasticity solution are assessed using a geometrically linear analysis. It is found that the finite-element/local elasticity solution scheme produce a very accurate interface stress representation in the local flange termination region. The use of 10 to 15 eigenvalues, in the eigenvalue expansion series, and 100 collocation points results in a converged local elasticity solution. In the second part of the investigation, the local elasticity solution is extended to include geometric nonlinearities. Using this analysis procedure, the influence of geometric nonlinearities on skin-stiffener interface stresses is evaluated. It is found that in flexible stiffened skin structures, which exhibit out-of-plane deformation on the order of 2 to 4 times the skin thickness, inclusion of geometrically nonlinear effects in the calculation of interface stresses is very important. Thus, the use of a geometrically linear analysis, rather than a nonlinear analysis, can lead to considerable error in the computation of the interface stresses. Finally, using the analytical tool developed in this investigation, it is possible to study the influence of stiffener parameters on the state of interface stresses. / Ph. D.
|
452 |
Analytical solutions for the statics and dynamics of rectangular laminated composite plates using shearing deformation theoriesKhdeir, Ahmed Adel January 1986 (has links)
The Levy-type analytical solutions in conjunction with the state-space concept are developed for symmetric laminated composite rectangular plates. Combinations of simply-supported, free and clamped boundary conditions are considered. The solutions are obtained for the first-order and higher-order theories in predicting the transverse deflections and stresses. Numerical results are presented for various boundary conditions, aspect ratios, lamination schemes and different loadings.
The developments of these theories accomplished in general coordinates allow one to fulfill both the invariance requirements and to derive the relevant equations in any convenient planar systems of coordinates.
The dynamic response problems are analyzed in the framework of higher order theories where the effects of transverse normal stress and rotary inertia forces are evaluated.
The comparison between the theories as well as previously reported results is reported. / Ph. D. / incomplete_metadata
|
453 |
A study of polyimide films modified with goldMadeleine, Dennis Gerard January 1988 (has links)
Virginia Polytechnic Institute and State University laboratories have produced a wide variety of polyimide films which have been modified by the incorporation of metal compounds. These polymer/metal composites have potential use as coatings in aerospace applications where enhanced electrical conductivity and thermal stability are desirable. Generally, these materials are produced by heating a polyamic acid solution which contains a soluble metal salt. While the electrical and thermal properties of some of these films have been studied in great detail, little is known about the factors which control the ultimate distribution of metal in the polymer matrix. In this work, the segregation of components in polyimide modified with the gold salt, HAuCl₄·H₂O, is described.
Thermal treatment usually promoted three changes in the film: (1) conversion of an initially present polyamic acid to the thermally stable polyimide, (2) reduction of chloroauric acid to metallic gold and (3) redistribution of the metal into gold domains either in the bulk or at a surface of the film. The third event listed above has been termed metalization. Most of the gold modified polyimide I films exhibited bulk metalization as evidenced by the dispersion of very small gold particles through out the film. However, the gold aggregates which comprised the metalized surface layer possessed several different morphologies which indicated that a diffusion limited aggregation processes controlled the aggregate growth. The appearance of these aggregates was central to developing a model of phase separation in these metal modified films. / Ph. D.
|
454 |
A method for the geometrically nonlinear analysis of compressively loaded prismatic composite structuresStoll, Frederick 13 October 2005 (has links)
A method was developed for the geometrically nonlinear analysis of the static response of thin-walled stiffened composite structures loaded in uniaxial or biaxial compression. The method is applicable to arbitrary prismatic configurations composed of linked plate strips, such as stiffened panels and thin-walled columns. The longitudinal ends of the structure are assumed to be simply supported, and geometric shape imperfections can be modelled. The method can predict the nonlinear phenomena of postbuckling strength and imperfection sensitivity which are exhibited by some buckling-dominated structures. The method is computer-based and is semi-analytic in nature, making it computationally economical in comparison to finite element methods.
The method uses a perturbation approach based on the use of a series of buckling mode shapes to represent displacement contributions associated with nonlinear response. Displacement contributions which are of second order in the modal amplitudes are incorporated in addition to the buckling mode shapes. The principle of virtual work is applied using a finite basis of buckling modes, and terms through the third order in the modal amplitudes are retained. A set of cubic nonlinear algebraic equations are obtained, from which approximate equilibrium solutions are determined. Buckling mode shapes for the general class of structure are obtained using the VIPASA analysis code within the PASCO stiffened-panel design code. Thus, subject to some additional restrictions in loading and plate anisotropy, structures _ which can be modelled with respect to buckling behavior by VIPASA can be analyzed with respect to nonlinear response using the new method.
Results obtained using the method are compared with both experimental and analytical results in the literature. The configurations investigated include several different unstiffened and blade-stiffened panel configurations, featuring both homogeneous, isotropic materials and laminated composite material. Results for the local-postbuckling response of stiffened and unstiffened panels agree well with results in the literature for moderate postbuckling load levels. In flat blade-stiffened panels which exhibit significant interaction of the local and Euler buckling modes, the method is successful in predicting the consequent imperfection sensitivity, but the method loses accuracy as imperfection amplitudes are increased. / Ph. D.
|
455 |
Fabrication of biomedical composite coatings by electrophoretic deposition and dip coating methodsWang, Zhengzheng January 2024 (has links)
It is essential to develop a new type of nanocomposite biomedical implant coatings that consist of bioactive ceramics and polymers, as well as customized surface characteristics. These coatings play a vital role in enhancing cell adhesion, proliferation, and interlocking at the interface between bone tissue and the implant. This development is crucial for prolonging the durability of orthopaedic implants. The utilization of combined colloidal and electrochemical processing techniques, specifically EPD and dip coating, enables the fabrication of these novel multi-component materials with relative simplicity. Additionally, they can be utilized to create nanostructures and surface topography that imitate the composition of human skeletal tissue on a nanoscale level. In addition, colloidal-electrochemical processing techniques can be easily scaled up for clinical product development and mass manufacture, unlike many regularly utilized nanotechnology processing techniques.
The absence of efficient and biocompatible dispersants and extractors is a significant obstacle to the widespread use of colloidal-electrochemical methods for fabricating novel biomaterials in EPD, as the success of this process relies on the utilization of a stable colloidal precursor. Biomimetics, sometimes known as gaining inspiration from the natural world, is one way to generating effective dispersion and extracting agents. Using this methodology, we identified novel extracting agents. These agents proved to be highly effective in extracting particles and forming composite films that combined organic and inorganic components, containing different sized of silica particles and polyvinylidene fluoride (PVDF). By extending the method, biomimetic inspiration was derived from the human digestive system, to use bile acid salts (BAS) as solubilizing, charging, dispersing and film-forming agents for the preparation of composite coatings, containing water insoluble drugs and proteins. These coatings have the potential to be utilized for targeted administration of antibiotics, thereby preventing surgical infections after implantation. Furthermore, the inclusion of BAS surfactants enables the solubilization and dispersion of hydrophobic drugs and molecules, as well as the creation of composite films with functional properties using EPD. Moreover, a novel technique is devised for the anodic EPD of alginic acid polymer (AlgH) and composite films that contain drug molecules within the AlgH matrix. This approach entailed utilizing L-arginine as an alkalizing agent to enhance the solubility of medicines that have low solubility in water. AlgH and medication molecules are dissolved in water and then deposited via anodic EPD.
Dip coating remains a challenging task when it comes to depositing high concentrations of non-toxic solvents containing high molecular weight (MW) polymers, such as poly(ethyl methacrylate) (PEMA) and poly(methyl methacrylate) (PMMA). In this study, we initially suggested the utilization of water-isopropanol as a co-solvent for dissolving high molecular weight PMMA at high concentrations. Additionally, we utilized an advanced dispersion agent to facilitate the solubilization of PEMA. It was discovered that water molecules can surround and solvate the carbonyl groups of the polymers. This technology avoided the use of noxious solvents and a protracted heating process for their elimination. In addition, these coatings have the potential to be integrated with advanced inorganic particles, such as drugs, diamond and HA, for use in biomedical applications. / Thesis / Doctor of Philosophy (PhD) / There is a need to develop new coatings and manufacturing procedures for biomedical implant materials in order to extend the lifespan of orthopaedic implants used in clinical settings and avoid the need for expensive and unpleasant revision surgeries. Bioactive coatings enhance the durability of orthopaedic implants by reducing scar tissue formation and inflammation, while also increasing the chemical and physical bond between the synthetic implant and natural bone. As bone is a natural composite material, our goal in designing replacement materials is to replicate the inherent chemical composition and structure of human bone. Electrophoretic deposition (EPD) is a manufacturing technology that holds significant potential for creating composite coatings that imitate the structure of natural bone. This approach involves the application of an electric field to deposit charged materials onto a conductive substrate. The primary challenge in the manufacturing process of materials utilizing EPD is the tendency of particles in the precursor suspension to coagulate and distribute unevenly. This ultimately results in unwanted characteristics in the final coatings. An effective method to overcome this problem is by use dispersing agents, which are tiny molecules with either positive or negative charges that disperse particles in a suspension through electrostatic repulsion, physical separation, or a mix of both. Traditional dispersing agents have proven effective in various applications; nevertheless, their toxicity renders them unsuitable for the production of biological materials. This study presents the identification of novel dispersion agents, biomedical coatings, and manufacturing techniques for creating coatings that enhance the durability of implants and possess additional functionalities, such as biosensing for disease detection.
|
456 |
Transport of seawater and its influence on the transverse tensile strength of unidirectional composite materialsUnknown Date (has links)
The objective of this research was to characterize the seawater transport and its effect on the transverse tensile strength of a carbon/vinylester composite. The moisture contents of neat vinylester and unidirectional carbon/vinylester composite panels immersed in seawater were monitored until saturation. A model for moisture up-take was developed based on superposition of Fickian diffusion, and Darcy’s law for capillary transport of water. Both the predicted and measured saturation times increased with increasing panel size, however the diffusion model predicts much longer times while the capillary model predicts shorter time than observed experimentally. It was also found that the saturation moisture content decreased with increasing panel size. Testing of macroscopic and miniature composite transverse tensile specimens, and SEM failure inspection revealed more fiber/matrix debonding in the seawater saturated composite than the dry composite, consistent with a slightly reduced transverse tensile strength. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
|
457 |
Determination of the tensile strength of the fiber/matrix interface for glass/epoxy & carbon/vinylesterUnknown Date (has links)
The tensile strength of the fiber/matrix interface was determined through the development of an innovativetest procedure.Aminiature tensile coupon with a through-thickness oriented, embedded single fiberwas designed. Tensile testing was conducted ina scanning electron microscope (SEM)while the failure process could be observed.Finite element stress analysis was conducted to determine the state of stressat the fiber/matrix interface in the tensile loaded specimen, and the strength of the interface.Test specimensconsistingof dry E-glass/epoxy and dry and seawater saturatedcarbon/vinylester510Awere preparedand tested.The load at the onset of debondingwascombined withthe radial stressdistributionnear thefree surface of the specimento reducethe interfacial tensile strength. For glass/epoxy, was 36.7±8.8MPa.For the dryand seawater saturated carbon/vinylester specimensthetensilestrengthsof the interface were 23.0±6.6 and 25.2±4.1MPa, respectively.The difference is not significant. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
|
458 |
Computation of physical properties of materials using percolation networks.January 1999 (has links)
Wong Yuk Chun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 71-74). / Abstracts in English and Chinese. / Abstract --- p.ii / Acknowledgments --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation --- p.2 / Chapter 1.2 --- The Scope of the Project --- p.2 / Chapter 1.3 --- An Outline of the Thesis --- p.3 / Chapter 2 --- Related Work --- p.5 / Chapter 2.1 --- Percolation Effect --- p.5 / Chapter 2.2 --- Percolation Models --- p.6 / Chapter 2.2.1 --- Site Percolation --- p.6 / Chapter 2.2.2 --- Bond Percolation --- p.8 / Chapter 2.3 --- Simulated Annealing --- p.8 / Chapter 3 --- Electrical Property --- p.11 / Chapter 3.1 --- Electrical Conductivity --- p.11 / Chapter 3.2 --- Physical Model --- p.13 / Chapter 3.3 --- Algorithm --- p.16 / Chapter 3.3.1 --- Simulated Annealing --- p.18 / Chapter 3.3.2 --- Neighborhood Relation and Objective Function --- p.19 / Chapter 3.3.3 --- Configuration Space --- p.21 / Chapter 3.3.4 --- Annealing Schedule --- p.22 / Chapter 3.3.5 --- Expected Time Bound --- p.23 / Chapter 3.4 --- Results --- p.26 / Chapter 3.5 --- Discussion --- p.27 / Chapter 4 --- Thermal Properties --- p.30 / Chapter 4.1 --- Thermal Expansivity --- p.31 / Chapter 4.2 --- Physical Model --- p.32 / Chapter 4.2.1 --- The Physical Properties --- p.32 / Chapter 4.2.2 --- Objective Function and Neighborhood Relation --- p.37 / Chapter 4.3 --- Algorithm --- p.38 / Chapter 4.3.1 --- Parallel Simulated Annealing --- p.39 / Chapter 4.3.2 --- The Physical Annealing Schedule --- p.42 / Chapter 4.4 --- Results --- p.43 / Chapter 4.5 --- Discussion --- p.47 / Chapter 5 --- Scaling Properties --- p.48 / Chapter 5.1 --- Problem Define --- p.49 / Chapter 5.2 --- Physical Model --- p.50 / Chapter 5.2.1 --- The Physical Properties --- p.50 / Chapter 5.2.2 --- Bond Stretching Force --- p.50 / Chapter 5.2.3 --- Objective Function and Configuration Space --- p.51 / Chapter 5.3 --- Algorithm --- p.52 / Chapter 5.3.1 --- Simulated Annealing --- p.52 / Chapter 5.3.2 --- The Conjectural Method --- p.54 / Chapter 5.3.3 --- The Physical Annealing Schedule --- p.56 / Chapter 5.4 --- Results --- p.57 / Chapter 5.4.1 --- Case I --- p.59 / Chapter 5.4.2 --- Case II --- p.60 / Chapter 5.4.3 --- Case III --- p.60 / Chapter 5.5 --- Discussion --- p.61 / Chapter 6 --- Conclusion --- p.62 / Chapter A --- An Example on Studying Electrical Resistivity --- p.64 / Chapter B --- Theory of Elasticity --- p.67 / Chapter C --- Random Number Generator --- p.69 / Bibliography
|
459 |
Fire Characteristics of Cored Composite Materials for Marine UseGrenier, Andrew T. 01 May 2002 (has links)
A material study was conducted on two types of cored composite materials used in shipbuilding: a GRP/Balsa Cored sandwich and a GRP/PVC Foam Cored sandwich. The two materials were tested in the Cone Calorimeter and the LIFT Apparatus to obtain data on ignitability, heat release rate, mass loss rate, and smoke production. The observed phenomena of delamination, melting and charring of the core materials, and edge effects are discussed in the context of how they affect test results. The ignition data analysis method specified in ASTM E 1321 "Standard Test Method for Determining Material Ignition and Flame Spread Properties" and Janssens' "improved" method of analysis were both used to derive effective material properties of the test materials. These two analysis methods are shown to produce different material property values for critical irradiance for ignition, ignition temperature, and the effective thermal property, $k ho c$. Material properties derived using Janssens' method are shown to be more consistent between the two test materials and the two different test methods; they were also shown to be better predictors of time to ignition when compared to actual test data. Material properties are used as input to Quintiere's fire growth model in order to evaluate their affect on time to flashover predictions in the ISO 9705 Room/Corner test scenario. Recommendations are made for future testing of cored composite materials, ignition data analysis methods, predictive fire growth models, and other work with composite materials. ** This copy contains no figures or appendices **
|
460 |
Viscoelastic relaxation in bolted thermoplastic composite jointsSchmitt, Ron R. 12 1900 (has links)
Results from a research program to investigate the long term effects of
through-the-thickness fastener clamp-up force (preload) relaxation on the
strength of mechanically fastened joints for two graphite/thermoplastic
composite materials (Dupont's IM6/KIII and ICI-Fiberite's IM8/APC(HTA)) are
summarized and compared with analytical methods. An experimental program
was conducted in which 56 mechanically fastened single-shear joints were
tested. Phase I static tests established joint bearing strength as a function of
clamp-up force for two types of fasteners (protruding head and countersink) with
no relaxation of preload. Phase II testing monitored short-term fastener preload
relaxation (up to 1 ,000 hours), with special bolt force sensor washers. Inservice
parameters included were temperature, in-plane loads, and torque. The
jOints were tested to failure at the end of the relaxation time period to determine
any subsequent effect on joint strength.
Phase I test results indicated that joint bearing strength increased by as
much as twenty-eight percent over the clamp-up force range of a Ibs (fingertight)
to 3,500 Ibs for both materials. Fastener head type, material, and
temperature also affected the resultant bearing strength. For Phase II, fastener
clamp-up force at room temperature (78°F) relaxed an average of six percent
from the initial value during the short-term test period. The relaxation was
projected to be as high as fourteen and sixteen percent at 100,000 hours for
HTA and Kill, respectively. The elevated temperature condition (250°F)
significantly increased the relaxation rate with the projected 100,000 hour
relaxation amount being as high as thirty-seven percent for HTA and sixty
percent for Kill. Comparison of the Phase II bearing strengths to the Phase I
results indicated that portions of the data correlated well, while others did not. It
was concluded that relaxation of the clamp-up force over the short-term time
period did not significantly lower the bearing strength of either material,
however an extended exposure to 250°F could affect the bearing strength. / Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering.
|
Page generated in 0.1565 seconds