• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 16
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modélisation dynamique et optimisation des systèmes de stockage d'énergie par air comprimé fonctionnant à pression fixe / Transient modeling and optimization of constant pressure compressed air energy storage systems

Mazloum, Youssef 09 December 2016 (has links)
La contribution des sources d'énergie renouvelables dans le mix de la production d'électricité augmente largement. De ce fait, l'intégration des technologies de stockage d'énergie dans le réseau électrique devient inévitable afin de remédier aux inconvénients des sources renouvelables. Ainsi, l'objectif de cette thèse est d'évaluer la rentabilité, d'optimiser et d'étudier le comportement dynamique d'un cycle adiabatique de stockage d'énergie par air comprimé fonctionnant à pression fixe (IA-CAES). Ce système est caractérisé d'une part par la récupération de la chaleur de compression et d'autre part par le stockage d'air comprimé sous pression fixe dans des réservoirs hydropneumatiques. Ceux-ci permettent d'améliorer l'efficacité et la densité énergétiques du système de stockage et d'éviter l'utilisation de sources d'énergie fossiles.Tout d'abord, un modèle statique est développé pour achever des analyses énergétiques et exergétique du système IA-CAES. Un modèle exergoéconomique est également réalisé dans le but d'optimiser la rentabilité du système de stockage en utilisant un algorithme génétique. Ainsi, une fonction objective, qui prend en compte le coût d'investissement et le coût d'exploitation, est définie pour être minimisée. L'efficacité du système est de 55,1% dans le cas de base, elle est améliorée à 56,6% après optimisation avec une diminution du capital investi de 5,6%.D'autre part, un modèle dynamique est développé pour étudier la flexibilité du système de stockage et sa capacité à répondre aux besoins du réseau électrique (réserves primaires et secondaires) en évaluant la durée des phases transitoires. Les résultats montrent que le système de stockage a besoin d’un temps supérieur à 2 min avant de pouvoir consommer tout l'excès d'énergie disponible sur le réseau électrique et supérieur à 5 min avant d'être capable de produire toute l'énergie requise par le réseau électrique. Des suggestions sont analysées dans l'objectif d'améliorer la flexibilité du système de stockage tel que le fonctionnement du système en mode de veille avec des vitesses réduites. Il permet de réduire les pertes d'énergie de 68% en mode de stockage et de 27% en mode de production par rapport au mode de veille en vitesses nominales. / The contribution of the renewable energy sources in the electricity generation mix is greatly increasing. Thereby, the integration of the energy storage technologies into the electrical grid is becoming crucial to reduce the drawbacks of the renewable energy sources. Then, the objective of this thesis is to evaluate the cost-effectiveness, to optimize and to study the transient behavior of a novel isobaric adiabatic compressed air energy storage (IA-CAES) system. This plant is characterized by the recovery of the compression heat and the storage of the compressed air under fixed pressure in hydro-pneumatic tanks. These allow improving the efficiency and the energy density of the storage system and avoiding the use of fossil fuel sources.Firstly, a steady state model is developed to perform energy and exergy analyses of the IA-CAES system. An exergoeconomic model is also carried out in order to optimize the cost-effectiveness of the storage system by using a genetic algorithm. So, an objective function, which includes the investment cost and the operating cost, is defined to be minimized. The system efficiency is 55.1% in the base case, it is improved to 56.6% after optimization with a decrease in the capital investment by 5.6%.Secondly, a dynamic model is developed to study the flexibility of the storage system and its ability to meet the electrical grid requirements (primary and secondary reserves) by evaluating the duration of the transient states. The results show that the storage system needs more than 2 min before being able to consume all the excess energy available on the electrical grid and more than 5 min before being able to produce all the energy required by the electrical grid. Suggestions are analyzed to improve the flexibility of the storage system such as the operation of the storage system in standby mode with low speeds. It allows reducing the energy losses by 68% during the storage mode and by 27% during the production mode compared to the standby mode in nominal speeds.
12

Energy storage and their combination with wind power compared to new nuclear power in Sweden : A review and cost analysis

Englund-Karlsson, Simon January 2020 (has links)
As intermittent renewable energy sources such as wind and solar power gradually increase around the world, older technologies such as nuclear power is phased out in Sweden and many other countries. It is then important to ensure that the total power need is secured, and that the power grid can remain stable. One way of managing intermittent renewables is by using energy storage. The main goal of this thesis was to compare energy storage methods and their costs. A secondary aim was to investigate how the cost of developing more renewable energy sources, in combination with different energy storage methods, compares to erecting new nuclear power. This thesis was limited to three energy storage technologies, namely pumped hydro storage (PHS), compressed air energy storage (CAES), and four battery storage technologies. They were combined with wind power in the cost analysis. The comparison was done by performing a literature review and economical calculations, which focused especially on levelized cost of storage (LCOS). The results from the economic calculations indicated that PHS and CAES had lower LCOS than battery storage technologies. Similar results could be seen in the literature review as well. When comparing levelized cost of energy (LCOE) nuclear power had the lowest, €0.03-0.12 kWh-1, followed by wind power in combination with PHS and CAES, both around €0.07-0.24 kWh-1. This result was maintained also at sensitivity analysis regarding the discount rate, which both nuclear power and PHS proved rather sensitive to. Keywords: energy storage, nuclear power, wind power, pumped hydro storage, compressed air energy storage, battery energy storage, levelized cost of energy, Sweden
13

Compressed air energy storage : Process review and case study of small scale compressed air energy storage aimed at residential buildings / Tryckluftsenergilagring : Processöversikt och fallstudie av småskalig tryckluftsenergilagring riktad mot bostadshus

Steen, Evelina, Torestam, Malin January 2018 (has links)
The potential for electrical energy storage to both provide services to the electrical grid and help to better integrate renewable energies in the electrical system is promising. This report investigates one type of storage, compressed air energy storage (CAES), where energy is stored by compressing air during hours of low electricity demand and later expanding the air to generate electricity during high demand hours. To this day it exists two large plants, but small facilities have yet to be implemented, raising the question whether it could be viable to use CAES on a smaller scale as well. By creating a model of a CAES system based on the principles of thermodynamics and applying it to a hypothetical group of residences, its ability to balance daily fluctuations in electricity demand is explored. The result show that the system is able to cover some of the demand but there is no economic profit to be gained. The results of this report suggest that a CAES system of this size is not a viable option during current price market for electricity in Sweden but during other circumstances it could be relevant. / Dagens energisystem kräver vissa tjänster för att kunna behålla stabilitet och tillgodose energibehovet. Energilagring är ett sätt att förse systemet med dessa tjänster samtidigt som det också skapar möjlighet att bättre utnyttja förnyelsebara energiresurser, som vind och sol, som annars kan vara för oförutsägbara för att kunna utnyttjas maximalt. I denna studie undersöks komprimerad luft som energilagring (CAES). Sammanfattningsvis används billig elektricitet under timmar då elförbrukningen är låg för att komprimera luft och lagra denna för att sedan expandera luften igen och på så vis generera elektricitet vid behov eller då det finns ekonomisk vinstmöjlighet. CAES systemet kan vara uppbyggt och dimensionerat på flera olika sätt vilket undersöks samt beskrivs i närmare detalj. Möjligheten att använda CAES i liten skala för att tillgodose ett dagligen varierande energibehov undersöks och det utrönas ifall detta är ekonomiskt gynnsamt eller inte. Detta undersöks genom att skapa en modell över ett CAES-system som appliceras på energibehovet för en grupp bostäder. Resultatet visar att systemet kan täcka en del av energibehovet men ekonomisk vinning är inte möjligt. Utifrån dessa resultat konstateras att CAES i liten skala inte är ett ekonomiskt försvarbart alternativ för att täcka toppar i ett varierande energibehov vid det rådande energipriset i Sverige men under andra omständigheter skulle det kunna vara möjligt.
14

Compressed air energy storage : Process review and case study of small scale compressed air energy storage aimed at residential buildings / Tryckluftsenergilagring : Processöversikt och fallstudie av småskalig tryckluftsenergilagring riktad mot bostadshus

Steen, Evelina, Torestam, Malin January 2018 (has links)
The potential for electrical energy storage to both provide services to the electrical grid and help to better integrate renewable energies in the electrical system is promising. This report investigates one type of storage, compressed air energy storage (CAES), where energy is stored by compressing air during hours of low electricity demand and later expanding the air to generate electricity during high demand hours. To this day it exists two large plants, but small facilities have yet to be implemented, raising the question whether it could be viable to use CAES on a smaller scale as well. By creating a model of a CAES system based on the principles of thermodynamics and applying it to a hypothetical group of residences, its ability to balance daily fluctuations in electricity demand is explored. The result show that the system is able to cover some of the demand but there is no economic profit to be gained. The results of this report suggest that a CAES system of this size is not a viable option during current price market for electricity in Sweden but during other circumstances it could be relevant. / Dagens energisystem kräver vissa tjänster för att kunna behålla stabilitet och tillgodose energibehovet. Energilagring är ett sätt att förse systemet med dessa tjänster samtidigt som det också skapar möjlighet att bättre utnyttja förnyelsebara energiresurser, som vind och sol, som annars kan vara för oförutsägbara för att kunna utnyttjas maximalt. I denna studie undersöks komprimerad luft som energilagring (CAES). Sammanfattningsvis används billig elektricitet under timmar då elförbrukningen är låg för att komprimera luft och lagra denna för att sedan expandera luften igen och på så vis generera elektricitet vid behov eller då det finns ekonomisk vinstmöjlighet. CAES systemet kan vara uppbyggt och dimensionerat på flera olika sätt vilket undersöks samt beskrivs i närmare detalj. Möjligheten att använda CAES i liten skala för att tillgodose ett dagligen varierande energibehov undersöks och det utrönas ifall detta är ekonomiskt gynnsamt eller inte. Detta undersöks genom att skapa en modell över ett CAES-system som appliceras på energibehovet för en grupp bostäder. Resultatet visar att systemet kan täcka en del av energibehovet men ekonomisk vinning är inte möjligt. Utifrån dessa resultat konstateras att CAES i liten skala inte är ett ekonomiskt försvarbart alternativ för att täcka toppar i ett varierande energibehov vid det rådande energipriset i Sverige men under andra omständigheter skulle det kunna vara möjligt.
15

Increasing wind power penetration and voltage stability limits using energy storage systems

Le, Ha Thu 22 September 2010 (has links)
The research is motivated by the need to address two major challenges in wind power integration: how to mitigate wind power fluctuation and how to ensure stability of the farm and host grid. It is envisaged that wind farm power output fluctuation can be reduced by using a specific type of buffer, such as an energy storage system (ESS), to absorb its negative impact. The proposed solution, therefore, employs ESS to solve the problems. The key research findings include a new technique for calculating the desired power output profile, an ESS charge-discharge scheme, a novel direct-calculation (optimization-based) method for determining ESS optimal rating, and an ESS operation scheme for improving wind farm transient stability. Analysis with 14 wind farms and a compressed-air energy storage system (CAES) shows that the charge-discharge scheme and the desired output calculation technique are appropriate for ESS operation. The optimal ESSs for the 14 wind farms perform four or less switching operations daily (73.2%-85.5% of the 365 days) while regulating the farms output variation. On average, the ESSs carry out 2.5 to 3.1 switching operations per day. By using the direct-calculation method, an optimal ESS rating can be found for any wind farm with a high degree of accuracy. The method has a considerable advantage over traditional differential-based methods because it does not require knowledge of the analytical form of the objective function. For ESSs optimal rating, the improvement in wind energy integration is between 1.7% and 8%. In addition, a net increase in grid steady-state voltage stability of 8.3%-18.3% is achieved by 13 of the 14 evaluated ESSs. For improving wind farm transient stability, the proposed ESS operation scheme is effective. It exploits the use of a synchronous-machine-based ESS as a synchronous condenser to dynamically supply a wind farm with reactive power during faults. Analysis with an ESS and a 60-MW wind farm consisting of stall-regulated wind turbines shows that the ESS increases the farm critical clearing time (CCT) by 1 cycle for worst-case bolted three-phase-to-ground faults. For bolted single-phase-to-ground faults, the CCT is improved by 23.1%-52.2%. / text
16

Cratus: Molten Salt Thermal Energy Storage

Pratt, Benjamin Michael 26 August 2022 (has links)
No description available.

Page generated in 0.1049 seconds