• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 15
  • 10
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 98
  • 98
  • 34
  • 20
  • 20
  • 20
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Multiphase Fluid-Material Interaction: Efficient Solution Algorithms and Shock-Dominated Applications

Ma, Wentao 05 September 2023 (has links)
This dissertation focuses on the development and application of numerical algorithms for solving compressible multiphase fluid-material interaction problems. The first part of this dissertation is motivated by the extraordinary shock-resisting ability of elastomer coating materials (e.g., polyurea) under explosive loading conditions. Their performance, however, highly depends on their dynamic interaction with the substrate (e.g., metal) and ambient fluid (e.g., air or liquid); and the detailed interaction process is still unclear. Therefore, to certify the application of these materials, a fluid-structure coupled computational framework is needed. The first part of this dissertation developes such a framework. In particualr, the hyper-viscoelastic constitutive relation of polyurea is incorporated into a high-fidelity computational framework which couples a finite volume compressible multiphase fluid dynamics solver and a nonlinear finite element structural dynamics solver. Within this framework, the fluid-structure and liquid-gas interfaces are tracked using embedded boundary and level set methods. Then, the developed computational framework is applied to study the behavior a bilayer coating–substrate (i.e., polyurea-aluminum) system under various loading conditions. The observed two-way coupling between the structure and the bubble generated in a near-field underwater explosion motivates the next part of this dissertation. The second part of this dissertation investigates the yielding and collapse of an underwater thin-walled aluminum cylinder in near-field explosions. As the explosion intensity varies by two orders of magnitude, three different modes of collapse are discovered, including one that appears counterintuitive (i.e., one lobe extending towards the explosive charge), yet has been observed in previous laboratory experiments. Because of the transition of modes, the time it takes for the structure to reach self-contact does not decrease monotonically as the explosion intensity increases. Detailed analysis of the bubble-structure interaction suggests that, in addition to the incident shock wave, the second pressure pulse resulting from the contraction of the explosion bubble also has a significant effect on the structure's collapse. The phase difference between the structural vibration and the bubble's expansion and contraction strongly influences the structure's mode of collapse. The third part focuses on the development of efficient solution algorithms for compressible multi-material flow simulations. In these simulations, an unresolved challenge is the computation of advective fluxes across material interfaces that separate drastically different thermodynamic states and relations. A popular class of methods in this regard is to locally construct bimaterial Riemann problems, and to apply their exact solutions in flux computation, such as the one used in the preceding parts of the dissertation. For general equations of state, however, finding the exact solution of a Riemann problem is expensive as it requires nested loops. Multiplied by the large number of Riemann problems constructed during a simulation, the computational cost often becomes prohibitive. This dissertation accelerates the solution of bimaterial Riemann problems without introducing approximations or offline precomputation tasks. The basic idea is to exploit some special properties of the Riemann problem equations, and to recycle previous solutions as much as possible. Following this idea, four acceleration methods are developed. The performance of these acceleration methods is assessed using four example problems that exhibit strong shock waves, large interface deformation, contact of multiple (>2) interfaces, and interaction between gases and condensed matters. For all the problems, the solution of bimaterial Riemann problems is accelerated by 37 to 87 times. As a result, the total cost of advective flux computation, which includes the exact Riemann problem solution at material interfaces and the numerical flux calculation over the entire computational domain, is accelerated by 18 to 81 times. / Doctor of Philosophy / This dissertation focuses on the development and application of numerical methods for solving multiphase fluid-material interaction problems. The first part of this dissertation is motivated by the extraordinary shock-resisting ability of elastomer coating materials (e.g., polyurea) under explosive loading conditions. Their performance, however, highly depends on their dynamic interaction with the underlying structure and the ambient water or air; and the detailed interaction process is still unclear. Therefore, the first part of this dissertation developes a fluid-structure coupled computational framework to certify the application of these materials. In particular, the special material property of the coating material is incorparated into a state-of-the-art fluid-structure coupled computational framework that is able to model large deformation under extreme physical conditions. Then, the developed computational framework is applied to study how a thin-walled aluminum cylinder with polyurea coating responds to various loading conditions. The observed two-way coupling between the structure and the bubble generated in a near-field underwater explosion motivates the next part of this dissertation. The second part of this dissertation investigates the failure (i.e., yielding and collapse) of an underwater thin-walled aluminum cylinder in near-field explosions. As the explosion intensity varies by two orders of magnitude, three different modes of collapse are discovered, including one that appears counterintuitive (i.e., one lobe extending towards the explosive charge), yet has been observed in previous laboratory experiments. Via a detailed analysis of the interaction between the explosion gas bubble, the aluminum cylinder, and the ambient liquid water, this dissertation elucidated the role of bubble dynamics in the structure's different failure behaviors and revealed the transition mechanism between these behaviors. The third part of this dissertation presents efficient solution algorithms for the simulations of compressible multi-material flows. Many problems involving bubbles, droplets, phase transitions, and chemical reactions fall into this category. In these problems, discontinuities in fluid state variables (e.g., density) and material properties arise across the material interfaces, challenging numerical schemes' accuracy and robustness. In this regard, a promising class of methods that emerges in the recent decade is to resolve the exact wave structure at material interfaces, such as the one used in the preceding parts of the dissertation. However, the computational cost of these methods is prohibitive due to the nested loops invoked at every mesh edge along the material interface. To address this issue, the dissertation develops four efficient solution methods, following the idea of exploiting special properties of governing equations and recycling previous solutions. Then, the acceleration effect of these methods is assessed using various challenging multi-material flow problems. In different test cases, significant reduction in computational cost (acceleration of 18 to 81 times) is achieved, without sacrificing solver robustness and solution accuracy.
32

Azimuthally Varying Noise Reduction Techniques Applied to Supersonic Jets

Heeb, Nicholas S. January 2015 (has links)
No description available.
33

Entropy Stability of Finite Difference Schemes for the Compressible Navier-Stokes Equations

Sayyari, Mohammed 07 1900 (has links)
In this thesis, we study the entropy stability of the compressible Navier-Stokes model along with a modification of the model. We use the discretization of the inviscid terms with the Ismail-Roe entropy conservative flux. Then, we study entropy stability of the augmentation of viscous, heat and mass diffusion finite difference approximations to the entropy conservative flux. Additionally, we look at different choices of the diffusion coefficient that arise from combining the viscous, heat and mass diffusion terms. Lastly, we present numerical results of the discretizations comparing the effects of the viscous terms on the oscillations near the shock and show that they preserve entropy stability.
34

The Quantized Velocity Finite Element Method

Cook, Charles 23 April 2024 (has links)
The Euler and Navier-Stokes-Fourier equations will be directly expressed as distribution evolution equations, where a new and proper continuum prescription will be derived. These equations of motion will be numerically solved with the development of a new and unique finite element formulation. Out of this framework, the 7D phasetime element has been born. To provide optimal stability, a new quantization procedure is established based on the principles of quantum theory. The entirety of this framework has been coined the "quantized velocity finite element method" (QVFEM). The work performed herein lays the foundational development of what is hoped to become a new paradigm shift in computational fluid dynamics. / Doctor of Philosophy / To model any of the four fundamental states of matter, for practical engineering applications, we must first recognize the complexity of such states. In consequence, a new and novel approach is presented on how to numerically simulate the dynamics of a gas using both the Euler and Navier-Stokes-Fourier equations of continuum mechanics and thermodynamics. In contrast to direct numerical simulation, a statistical mechanical prescription will be given where the equations of motion will be quantized using methods taken from the study of quantum mechanics. This newly developed discretization of the phase space and time, or phasetime, provides optimal stability for compressible flow simulations. From the newly proposed framework, the 7D phasetime element has been born.
35

Three Problems Involving Compressible Flow with Large Bulk Viscosity and Non-Convex Equations of State

Bahmani, Fatemeh 27 August 2013 (has links)
We have examined three problems involving steady flows of Navier-Stokes fluids. In each problem non-classical effects are considered. In the first two problems, we consider fluids which have bulk viscosities which are much larger than their shear viscosities. In the last problem, we examine steady supersonic flows of a Bethe-Zel'dovich-Thompson (BZT) fluid over a thin airfoil or turbine blade. BZT fluids are fluids in which the fundamental derivative of gasdynamics changes sign during an isentropic expansion or compression. In the first problem we consider the effects of large bulk viscosity on the structure of the inviscid approximation using the method of matched asymptotic expansions. When the ratio of bulk to shear viscosity is of the order of the square root of the Reynolds number we find that the bulk viscosity effects are important in the first corrections to the conventional boundary layer and outer inviscid flow. At first order the outer flow is found to be frictional, rotational, and non-isentropic for large bulk viscosity fluids. The pressure is found to have first order variations across the boundary layer and the temperature equation is seen to have two additional source terms at first order when the bulk viscosity is large. In the second problem, we consider the reflection of an oblique shock from a laminar flat plate boundary layer. The flow is taken to be two-dimensional, steady, and the gas model is taken to be a perfect gas with constant Prandtl number. The plate is taken to be adiabatic. The full Navier-Stokes equations are solved using a weighted essentially non-oscillatory (WENO) numerical scheme. We show that shock-induced separation can be suppressed once the bulk viscosity is large enough. In the third problem, we solve a quartic Burgers equation to describe the steady, two-dimensional, inviscid supersonic flow field generated by thin airfoils. The Burgers equation is solved using the WENO technique. Phenomena of interest include the partial and complete disintegration of compression shocks, the formation of expansion shocks, and the collision of expansion and compression shocks. / Ph. D.
36

Compressible Flow Characterization Using Non-Intrusive Acoustic Measurements

Otero Jr, Raul 10 October 2017 (has links)
Non-intrusive acoustic instruments that measure fluid velocity and temperature have been restricted to low subsonic Mach number applications due to increased complexities associated with acoustic refraction, low signal-to-noise ratios, and a limited range of practical applications. In the current work, the use of acoustics for non-intrusive flow monitoring in compressible flows is explored and a novel sonic anemometry and thermometry (SAT) technique is developed. Using multiple arrangements of SAT equipment, a compressible acoustic tomography technique was also developed to resolve flow non-uniformities. Three validation experiments were used to investigate the novel SAT technique performance, and a fourth validation experiment was used to explore compressible flow tomography capabilities. In the first experiment, an unheated jet was used to verify that the acoustic technique could measure fluid velocities in high subsonic Mach number flows. The application demonstrated velocity root mean square (RMS) errors of 9 m/s in unheated jet flows up to Mach 0.83. Next, a heated jet facility was used to assess the impact of fluid temperature on measurement accuracy. Using jet Mach numbers up to 0.7 and total temperatures up to 700 K, RMS velocity and static temperature errors up to 8.5 m/s (2.4% of maximum jet velocity) and 23.3 K (3.3% of total temperature) were observed. Finally, the acoustic technique was implemented at the exhaust of a JT15D-1A turbofan engine to investigate technique sensitivity to bypass engine conditions. A mass flow rate and thrust estimation approach was developed and RMS errors of 1.1 kg/s and 200 N were observed in conditions up to an exhaust Mach number of 0.48. Since modern acoustic tomography techniques require an incompressible flow assumption for velocity detection, advancements were made to extend acoustic tomography methods to compressible flow scenarios for the final experiment. The approach was tested in the heated jet operating at Mach 0.48 and 0.72 (total temperature of 675 K, approximately 2.25 times the ambient) and numerical simulations were used to identify technique sensitivity to input variables and system design. This research marks the first time an acoustic method has been used to estimate compressible flow velocities and temperatures. / Ph. D.
37

Hot wire and PIV studies of transonic turbulent wall-bounded flows

Sigfrids, Timmy January 2003 (has links)
<p>The compressible turbulent boundary layer developing over atwo-dimensional bump which leads to a supersonic pocket with aterminating shock wave has been studied. The measurements havebeen made with hot-wire anemometry and Particle ImageVelocimetry (PIV).</p><p>A method to calibrate hot-wire probes in compressible ow hasbeen developed which take into account not only the ow velocitybut also the inuence of the Mach number, stagnation temperatureand uid density. The calibration unit consists of a small jetow facility, where the temperature can be varied. The hot wiresare calibrated in the potential core of the free jet. The jetemanates in a container where the static pressure can becontrolled, and thereby the gas density. The calibration methodwas verfied in the at plate zero pressure gradient turbulentboundary layer in front of the bump at three different Machnumbers, namely 0.3, 0.5 and 0.7. The profiles were alsomeasured at different static pressures in order to see theinuence of varying density. Good agreement between the profilesmeasured at different pressures, as well as with the standardlogarithmic profile was obtained.</p><p>The PIV measurements of the boundary layer ow in front ofthe 2D bump showed good agreement with the velocity profilesmeasured with hotwire anemometry. The shock wave boundary layerinteraction was investigated for an inlet Mach number of 0.69.A lambda shock wave was seen on the downstream side of thebump. The velocity on both sides of the shock wave as measuredwith the PIV was in good agreement with theory. The shock wavewas found to cause boundary layer separation, which was seen asa rapid growth of the boundary layer thickness downstream theshock. However, no back ow was seen in the PIV-data, probablybecause the seeding did not give enough particles in theseparated region. The PIV data also showed that the shock wavewas oscillating, i.e. it was moving approximately 5 mm back andforth. This distance corresponds to about five boundary layerthicknesses in terms of the boundary layer upstream theshock.</p><p><b>Descriptors:</b>Fluid mechanics, compressible ow,turbulence, boundary layer, hot-wire anemometry, PIV, shockwave boundary layer interaction, shape factor.</p>
38

Numerical Investigation of Laminar-Turbulent Transition in a Cone Boundary Layer at Mach 6

Sivasubramanian, Jayahar January 2012 (has links)
Direct Numerical Simulations (DNS) are performed to investigate laminar-turbulent transition in a boundary layer on a sharp cone at Mach 6. The main objective of this dissertation research is to explore which nonlinear breakdown mechanisms may be dominant in a broad--band "natural" disturbance environment and then use this knowledge to perform controlled transition simulations to investigate these mechanisms in great detail. Towards this end, a "natural" transition scenario was modeled and investigated by generating wave packet disturbances. The evolution of a three-dimensional wave packet in a boundary layer has typically been used as an idealized model for "natural" transition to turbulence, since it represents the impulse response of the boundary layer and, thus, includes the interactions between all frequencies and wave numbers. These wave packet simulations provided strong evidence for a possible presence of fundamental and subharmonic resonance mechanisms in the nonlinear transition regime. However, the fundamental resonance was much stronger than the subharmonic. In addition to these two resonance mechanisms, the wave packet simulations also indicated the possible presence of oblique breakdown mechanism. To gain more insight into the nonlinear mechanisms, controlled transition simulations were performed of these mechanisms. Several small and medium scale simulations were performed to scan the parameter space for fundamental and subharmonic resonance. These simulations confirmed the findings of the wave packet simulations, namely that, fundamental resonance is much stronger compared to the subharmonic resonance. Subsequently a set of highly resolved fundamental and oblique breakdown simulations were performed. In these DNS, remarkable streamwise arranged "hot'' streaks were observed for both fundamental and oblique breakdown. The streaks were a consequence of the large amplitude steady longitudinal vortex modes in the nonlinear régime. These simulations demonstrated that both second--mode fundamental breakdown and oblique breakdown may indeed be viable paths to complete breakdown to turbulence in hypersonic boundary layers at Mach 6.
39

Instabilidade hidrodinâmica linear do escoamento compressível em uma cavidade / Linear hidrodinamic instability of compressible lid-driven cavity flow

Bergamo, Leandro Fernandes 28 April 2014 (has links)
Os mecanismos de instabilidade hidrodinâmica têm um papel importante no processo da transição do escoamento de laminar para turbulento. A análise da instabilidade hidrodinâmica em uma cavidade com tampa deslizante foi realizada através da decomposição em modos globais (biglobal) para avaliar o efeito da compressibilidade neste fenômeno. O escoamento base foi obtido através de simulação numérica direta (DNS). Para tal, foi desenvolvido um código DNS compressível com discretização espacial por diferenças finitas compactas de alta resolução espectral e capacidade de processamento paralelo, com um método de decomposição de domínio que mantém a precisão das diferenças finitas compactas. O escoamento base é usado para montar o problema de autovalor oriundo das equações de Navier-Stokes linearizadas para a perturbação, discretizadas por diferenças finitas explícitas. O uso de diferenças finitas em conjunto com a implementação em matrizes esparsas reduz sensivelmente o uso de memória. Através do algoritmo de Arnoldi, a ordem do problema de autovalor é reduzida e os autovalores de interesse são recuperados. Os resultados indicam o efeito estabilizante da compressibilidade nos modos dominantes da cavidade e revelam modos inerentes ao escoamento compressível, para os quais a compressibilidade tem efeito desestabilizante. Dentre estes modos compressíveis, estão presentes modos de propagação sonora em dutos e modos relacionados à geração de som na cavidade. / Hydrodynamic instability mechanisms play an important role in laminar to turbulent transition. Hydrodynamic instability analysis of a lid-driven cavity flow was performed by global mode decomposition (biglobal) to evaluate compressibility effects on this phenomenon. The basic flow was calculated by direct numerical simulation (DNS). A compressible DNS code was developed with spectral-like compact finite difference spatial discretization. The code allows parallel processing with a domain decomposition method that preserves the compact finite difference accuracy. The basic flow is used to form the eigenvalue problem associated to the linear Navier- Stokes equations for the perturbation, which were discretized by an explicit finite difference scheme. The combination of sparse matrix techniques and finite difference discretization leads to a significant memory reduction. The order of the eigenvalue problem was reduced using the Arnoldi algorithm and the eigenvalues of interest were calculated. Results show the stabilizing effect of compressibility on the leading modes and reveal some modes intrinsic to compressible flow, for which compressibility has a destabilizing effect. Among these compressible modes, there are some related to sound propagation in ducts and to sound generation inside the cavity.
40

Modélisation macroscopique des écoulements à masse volumique variable : vers un modèle de la pyrolyse de la biomasse / Macroscopic modeling of variable density flows in porous media : a model of pyrolysis of biomass

Bendhaou, Wafa 13 March 2017 (has links)
La pyrolyse est la décomposition thermochimique de la biomasse en gaz de synthèse valorisables en biocarburants. Cette technologie, propre et renouvelable, nécessite aujourd’hui des efforts de recherche et de développement afin de prouver sa compétitivité par rapport aux autres sources d’énergie. L’objectif de cette thèse est de développer un modèle macroscopique de la pyrolyse en utilisant la méthode de prise de moyenne volumique. Le modèle sera ensuite utilisé pour faire des études numériques afin de caractériser le procédé et améliorer les performances des réacteurs. Une approche en deux temps a été établie afin d’atteindre notre objectif. D’abord, des modèles macroscopiques d’écoulements à masse volumique variable en milieu poreux ont été développés. Ce type d’écoulements est similaire à celui mis en jeu en pyrolyse pour deux deux raisons: la masse volumique varie sous l’effet de gradients forts de température et le réacteur de pyrolyse peut être considéré comme un milieu poreux à double porosité (porosité à l’échelle du lit et porosité à l’échelle de la particule). Les résultats théoriques ont montré que les équations de conservation macroscopiques (continuité, quantité de mouvement et énergie) et les propriétés effectives (masse volumique, perméabilité et diffusivité thermique) font apparaitre de nouveaux termes résultants de la variation de densité. La forme explicite de ces termes a été établie et validée par simulations numériques. Les résultats obtenus ont été utilisés dans un deuxième temps afin de développer un modèle macroscopique de la pyrolyse. / Pyrolysis is a thermo-chemical conversion of biomass into bio-fuels. This technology has not been fully developed and its competitiveness against other sources of energy is yet to be proven. The aim of this work is to derive a macroscopic model of pyrolysis by means of volume averaging method. The obtained macroscopic model can then be used to conduct fast and low-cost numerical simulations to characterize the process and improve the reactor efficiency. To achieve our objective, a two-steps methodology has been established. First, the fundamental problem of variable density flow in porous media has been investigated. The physical phenomena in this kind of problem are very similar to those involved in pyrolysis for two reasons: the fluid density varies due to high temperature gradients and the pyrolysis reactor can be considered as a double porosity medium (porosity at the reactor scale and porosity at the biomass particle scale). The obtained macroscopic conservation equations (continuity, momentum and energy) and the effective properties (density, permeability and thermal diffusivity) contain additional terms resulting from the fluid density variation. The explicit form of these terms has been established and their components have been computed. The resulting models of the first step have then been used to develop a macroscopic model of the pyrolysis in the second part of our study.

Page generated in 0.0862 seconds