• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 15
  • 10
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 98
  • 98
  • 34
  • 20
  • 20
  • 20
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Estudo numérico da influência da geometria de bocais convergente-divergente em escoamentos supersônicos

Berchon, Luciano da Silva January 2016 (has links)
O comportamento do escoamento supersônico no interior de bocais convergente-divergente retangulares é investigado numericamente, comparando-se quatro bocais com diferentes seções divergentes, com a mesma razão de aspecto AR=1.14 e mesma relação áreas da saída e da garganta dos bocais NAR=1.43. Os bocais são submetidos a diferentes pressões de admissão do fluido de trabalho, mantendo-se a relação entre a pressão de admissão e de descarga constante NPR=5. As simulações consideram o escoamento em regime permanente, compressível, viscoso, com abordagem baseada na massa específica (abordagem acoplada) , juntamente com o modelo de turbulência − /SST. A qualidade dos resultados é medida empregando-se três níveis de refino da discretização do domínio computacional, observandose a ordem de convergência e o índice de convergência de malhas GCI. Os resultados numéricos mostram que o número de Mach e a temperatura do fluido de trabalho independem da pressão de admissão, ao contrário do comportamento da pressão local e da massa específica. As propriedades do escoamento são fortemente dependentes da variação da geometria, e a variação do ângulo da seção divergente provoca uma mudança direta do número de Mach e inversa da pressão, da temperatura e da massa específica do escoamento no interior dessa seção. As simulações são comparadas com os resultados da teoria isentrópica e mostram que a linha sônica é deslocada do centro geométrico da garganta dos bocais para cada geometria simulada. A comparação com a teoria e com dados experimentais mostra desvios inferiores a 6x10-3 %. O uso do modelo de turbulência − / SST é capaz de resolver o escoamento com boa precisão, prevendo bem seu perfil de velocidades, as ondas de expansão de Prandtl-Meyer, juntamente com as interações dessas ondas com a camada limite. / The behavior of the supersonic flow inside rectangular convergent-divergent nozzle is investigated numerically by comparing four nozzles with different divergent sections, with a common aspect ratio AR=1.14, and the same nozzle exit-to-throat area ratios NAR=1.43. Nozzles are subject to several working fluid inlet pressures, maintaining a constant pressure ratio NPR=5. Simulations assume the flow in steady state, compressible, viscous, using a coupled approach with the turbulence model − /SST. The quality of results is measured by employing three refining levels of the computational domain discretization, observing the order of convergence and the grid convergence index GCI. Numerical results show that the Mach number and the temperature of the working fluid are independent of the inlet pressure, unlike the behavior of local pressure and the density. Flow properties are strongly dependent on the geometry variation, and the change on the angle of divergent section causes a direct effect on the Mach number and inverse on the pressure, the temperature and the density of the flow in this section. Simulations are compared to the results of the isentropic theory and show that the sonic line is offset from the geometric center of the throat nozzle, for each simulated geometry. Results from this work are compared to experimental and theoretical data and show deviations below 6x10-3 %. The − / SST turbulence model is able to solve the flow with good accuracy, and predicts its velocity profile, Prandtl-Meyer expansion waves, and their interactions with the boundary layer.
42

Instabilidade hidrodinâmica linear do escoamento compressível em uma cavidade / Linear hidrodinamic instability of compressible lid-driven cavity flow

Leandro Fernandes Bergamo 28 April 2014 (has links)
Os mecanismos de instabilidade hidrodinâmica têm um papel importante no processo da transição do escoamento de laminar para turbulento. A análise da instabilidade hidrodinâmica em uma cavidade com tampa deslizante foi realizada através da decomposição em modos globais (biglobal) para avaliar o efeito da compressibilidade neste fenômeno. O escoamento base foi obtido através de simulação numérica direta (DNS). Para tal, foi desenvolvido um código DNS compressível com discretização espacial por diferenças finitas compactas de alta resolução espectral e capacidade de processamento paralelo, com um método de decomposição de domínio que mantém a precisão das diferenças finitas compactas. O escoamento base é usado para montar o problema de autovalor oriundo das equações de Navier-Stokes linearizadas para a perturbação, discretizadas por diferenças finitas explícitas. O uso de diferenças finitas em conjunto com a implementação em matrizes esparsas reduz sensivelmente o uso de memória. Através do algoritmo de Arnoldi, a ordem do problema de autovalor é reduzida e os autovalores de interesse são recuperados. Os resultados indicam o efeito estabilizante da compressibilidade nos modos dominantes da cavidade e revelam modos inerentes ao escoamento compressível, para os quais a compressibilidade tem efeito desestabilizante. Dentre estes modos compressíveis, estão presentes modos de propagação sonora em dutos e modos relacionados à geração de som na cavidade. / Hydrodynamic instability mechanisms play an important role in laminar to turbulent transition. Hydrodynamic instability analysis of a lid-driven cavity flow was performed by global mode decomposition (biglobal) to evaluate compressibility effects on this phenomenon. The basic flow was calculated by direct numerical simulation (DNS). A compressible DNS code was developed with spectral-like compact finite difference spatial discretization. The code allows parallel processing with a domain decomposition method that preserves the compact finite difference accuracy. The basic flow is used to form the eigenvalue problem associated to the linear Navier- Stokes equations for the perturbation, which were discretized by an explicit finite difference scheme. The combination of sparse matrix techniques and finite difference discretization leads to a significant memory reduction. The order of the eigenvalue problem was reduced using the Arnoldi algorithm and the eigenvalues of interest were calculated. Results show the stabilizing effect of compressibility on the leading modes and reveal some modes intrinsic to compressible flow, for which compressibility has a destabilizing effect. Among these compressible modes, there are some related to sound propagation in ducts and to sound generation inside the cavity.
43

Flow measurements related to gas exchange applications

Laurantzon, Fredrik January 2012 (has links)
This thesis deals with flow measuring techniques applied to steady and pulsating gas flows relevant to gas exchange systems for internal combustion engines. Gas flows in such environments are complex, i.e. they are inhomogeneous, three-dimensional, unsteady, non-isothermal and exhibit significant density changes. While a variety of flow metering devices are available and have been devised for such flow conditions, the performance of these flow metersis to a large extent undocumented when a strongly pulsatile motion is superposed on the already complex flow field. Nonetheless, gas flow meters are commonly applied in such environments, e.g. in the measurement of the air flow to the engine or the amount of exhaust gas recirculation. The aim of the present thesis is therefore to understand and assess, and if possible to improve the performance of various flow meters under highly pulsatile conditions as well as demonstrating the use of a new type of flow meter for measurements of the pulsating mass flow upstream and downstream the turbine of a turbocharger. The thesis can be subdivided into three parts. The first one assesses the flow quality of a newly developed flow rig, designed for measurements of steady and pulsating air flow at flow rates and pulse frequencies typically found in the gas exchange system of cars and smaller trucks. Flow rates and pulsation frequencies achieved and measured range up to about 200 g/s and 80 Hz, respectively. The time-resolved mass flux and stagnation temperature under both steady and pulsating conditions were characterized by means of a combined hot/cold-wire probe which is part of a newly developed automated measurement module. This rig and measurement module were used to create a unique data base with well-defined boundary conditions to be used for the validation of numerical simulations, but in particular, to assess the performance of various flow meters. In the second part a novel vortex flow meter that can measure the timedependent flow rate using wavelet analysis has been invented, verified and extensively tested under various industrially relevant conditions. The newly developed technique was used to provide unique turbine maps under pulsatile conditions through time-resolved and simultaneous measurements of mass flow, temperature and pressure upstream and downstream the turbine. Results confirm that the quasi-steady assumption is invalid for the turbine considered as a whole. In the third and last part of the thesis, two basic fundamental questions that arose during the course of hot/cold-wire measurements in the aforementioned high speed flows have been addressed, namely to assess which temperature a cold-wire measures or to which a hot-wire is exposed to in high speed flows as well as whether the hot-wire measures the product of velocity and density or total density. Hot/cold-wire measurements in a nozzle have been performed to test various hypothesis and results show that the recovery temperature as well as the product of velocity and stagnation density are measured. / QC 20120510
44

Compressible Turbulent Flows : LES and Embedded Boundary Methods

Kupiainen, Marco January 2009 (has links)
QC 20100726
45

A DPG method for convection-diffusion problems

Chan, Jesse L. 03 October 2013 (has links)
Over the last three decades, CFD simulations have become commonplace as a tool in the engineering and design of high-speed aircraft. Experiments are often complemented by computational simulations, and CFD technologies have proved very useful in both the reduction of aircraft development cycles, and in the simulation of conditions difficult to reproduce experimentally. Great advances have been made in the field since its introduction, especially in areas of meshing, computer architecture, and solution strategies. Despite this, there still exist many computational limitations in existing CFD methods; in particular, reliable higher order and hp-adaptive methods for the Navier-Stokes equations that govern viscous compressible flow. Solutions to the equations of viscous flow can display shocks and boundary layers, which are characterized by localized regions of rapid change and high gradients. The use of adaptive meshes is crucial in such settings -- good resolution for such problems under uniform meshes is computationally prohibitive and impractical for most physical regimes of interest. However, the construction of "good" meshes is a difficult task, usually requiring a-priori knowledge of the form of the solution. An alternative to such is the construction of automatically adaptive schemes; such methods begin with a coarse mesh and refine based on the minimization of error. However, this task is difficult, as the convergence of numerical methods for problems in CFD is notoriously sensitive to mesh quality. Additionally, the use of adaptivity becomes more difficult in the context of higher order and hp methods. Many of the above issues are tied to the notion of robustness, which we define loosely for CFD applications as the degradation of the quality of numerical solutions on a coarse mesh with respect to the Reynolds number, or nondimensional viscosity. For typical physical conditions of interest for the compressible Navier-Stokes equations, the Reynolds number dictates the scale of shock and boundary layer phenomena, and can be extremely high -- on the order of 10⁷ in a unit domain. For an under-resolved mesh, the Galerkin finite element method develops large oscillations which prevent convergence and pollute the solution. The issue of robustness for finite element methods was addressed early on by Brooks and Hughes in the SUPG method, which introduced the idea of residual-based stabilization to combat such oscillations. Residual-based stabilizations can alternatively be viewed as modifying the standard finite element test space, and consequently the norm in which the finite element method converges. Demkowicz and Gopalakrishnan generalized this idea in 2009 by introducing the Discontinous Petrov-Galerkin (DPG) method with optimal test functions, where test functions are determined such that they minimize the discrete linear residual in a dual space. Under the ultra-weak variational formulation, these test functions can be computed locally to yield a symmetric, positive-definite system. The main theoretical thrust of this research is to develop a DPG method that is provably robust for singular perturbation problems in CFD, but does not suffer from discretization error in the approximation of test functions. Such a method is developed for the prototypical singular perturbation problem of convection-diffusion, where it is demonstrated that the method does not suffer from error in the approximation of test functions, and that the L² error is robustly bounded by the energy error in which DPG is optimal -- in other words, as the energy error decreases, the L² error of the solution is guaranteed to decrease as well. The method is then extended to the linearized Navier-Stokes equations, and applied to the solution of the nonlinear compressible Navier-Stokes equations. The numerical work in this dissertation has focused on the development of a 2D compressible flow code under the Camellia library, developed and maintained by Nathan Roberts at ICES. In particular, we have developed a framework allowing for rapid implementation of problems and the easy application of higher order and hp-adaptive schemes based on a natural error representation function that stems from the DPG residual. Finally, the DPG method is applied to several convection diffusion problems which mimic difficult problems in compressible flow simulations, including problems exhibiting both boundary layers and singularities in stresses. A viscous Burgers' equation is solved as an extension of DPG to nonlinear problems, and the effectiveness of DPG as a numerical method for compressible flow is assessed with the application of DPG to two benchmark problems in supersonic flow. In particular, DPG is used to solve the Carter flat plate problem and the Holden compression corner problem over a range of Mach numbers and laminar Reynolds numbers using automatically adaptive schemes, beginning with very under-resolved/coarse initial meshes. / text
46

Large-eddy simulations of scramjet engines

Koo, Heeseok 20 June 2011 (has links)
The main objective of this dissertation is to develop large-eddy simulation (LES) based computational tools for supersonic inlet and combustor design. In the recent past, LES methodology has emerged as a viable tool for modeling turbulent combustion. LES computes the large scale mixing process accurately, thereby providing a better starting point for small-scale models that describe the combustion process. In fact, combustion models developed in the context of Reynolds-averaged Navier Stokes (RANS) equations exhibit better predictive capability when used in the LES framework. The development of a predictive computational tool based on LES will provide a significant boost to the design of scramjet engines. Although LES has been used widely in the simulation of subsonic turbulent flows, its application to high-speed flows has been hampered by a variety of modeling and numerical issues. In this work, we develop a comprehensive LES methodology for supersonic flows, focusing on the simulation of scramjet engine components. This work is divided into three sections. First, a robust compressible flow solver for a generalized high-speed flow configuration is developed. By using carefully designed numerical schemes, dissipative errors associated with discretization methods for high-speed flows are minimized. Multiblock and immersed boundary method are used to handle scramjet-specific geometries. Second, a new combustion model for compressible reactive flows is developed. Subsonic combustion models are not directly applicable in high-speed flows due to the coupling between the energy and velocity fields. Here, a probability density function (PDF) approach is developed for high-speed combustion. This method requires solution to a high dimensional PDF transport equation, which is achieved through a novel direct quadrature method of moments (DQMOM). The combustion model is validated using experiments on supersonic reacting flows. Finally, the LES methodology is used to study the inlet-isolator component of a dual-mode scramjet. The isolator is a critical component that maintains the compression shock structures required for stable combustor operation in ramjet mode. We simulate unsteady dynamics inside an experimental isolator, including the propagation of an unstart event that leads to loss of compression. Using a suite of simulations, the sensitivity of the results to LES models and numerical implementation is studied. / text
47

Large Eddy Simulation of Turbulent Compressible Jets

Semlitsch, Bernhard January 2014 (has links)
Acoustic noise pollution is an environmental aggressor in everyday life. Aero- dynamically generated noise annoys and was linked with health issues. It may be caused by high-speed turbulent free flows (e.g. aircraft jet exhausts), by airflow interacting with solid surfaces (e.g. fan noise, wind turbine noise), or it may arise within a confined flow environment (e.g. air ventilation systems, refrigeration systems). Hence, reducing the acoustic noise levels would result in a better life quality, where a systematic approach to decrease the acoustic noise radiation is required to guarantee optimal results. Computational predic- tion methods able to provide all the required flow quantities with the desired temporal and spatial resolutions are perfectly suited in such application areas, when supplementing restricted experimental investigations. This thesis focuses on the use of numerical methodologies in compressible flow applications to understand aerodynamically noise generation mechanisms and to assess technologies used to suppress it. Robust and fast steady-state Reynolds Averaged Navier-Stokes (RANS) based formulations are employed for the optimal design process, while the high fidelity Large Eddy Simulation (LES) approach is utilized to reveal the detailed flow physics and to investigate the acoustic noise production mechanisms. The employment of fast methods on a wide range of cases represents a brute-force strategy used to scrutinize the optimization parameter space and to provide general behavioral trends. This in combination with accurate simulations performed for particular condi- tions of interest becomes a very powerful approach. Advance post-processing techniques (i.e. Proper Orthogonal Decomposition and Dynamic Mode Decomposition) have been employed to analyze the intricate, highly turbulent flows. The impact of using fluidic injection inside a convergent-divergent nozzle for acoustic noise suppression is analyzed, first using steady-state RANS simulations. More than 250 cases are investigated for the optimal injection location and angle, amount of injected flow and operating conditions. Based on a-priori established criteria, a few optimal candidate solutions are detected from which one geometrical configuration is selected for being thoroughly investigated by using detailed LES calculations. This allows analyzing the unsteady shock pattern movement and the flow structures resulting with fluidic injec- tion. When investigating external fluidic injection configurations, some lead to a high amplitude shock associated noise, so-called screech tones. Such unsteady phenomena can be captured and explained only by using unsteady simulations. Another complex flow scenario demonstrated using LES is that of a high ve- locity jet ejected into a confined convergent-divergent ejector (i.e. a jet pump). The standing wave pattern developed in the confined channel and captured by LES, significantly alters the acoustic noise production. Steady-state methods failed to predict such events. The unsteady highly resolved simulations proved to be essential for analyzing flow and acoustics phenomena in complex problems. This becomes a very powerful approach when is used together with steady-state, low time-consuming formulations and when complemented with experimental measurements. / <p>QC 20141202</p>
48

Adaptive Algorithms and High Order Stabilization for Finite Element Computation of Turbulent Compressible Flow

Nazarov, Murtazo January 2011 (has links)
This work develops finite element methods with high order stabilization, and robust and efficient adaptive algorithms for Large Eddy Simulation of turbulent compressible flows. The equations are approximated by continuous piecewise linear functions in space, and the time discretization is done in implicit/explicit fashion: the second order Crank-Nicholson method and third/fourth order explicit Runge-Kutta methods. The full residual of the system and the entropy residual, are used in the construction of the stabilization terms. These methods are consistent for the exact solution, conserves all the quantities, such as mass, momentum and energy, is accurate and very simple to implement. We prove convergence of the method for scalar conservation laws in the case of an implicit scheme. The convergence analysis is based on showing that the approximation is uniformly bounded, weakly consistent with all entropy inequalities, and strongly consistent with the initial data. The convergence of the explicit schemes is tested in numerical examples in 1D, 2D and 3D. To resolve the small scales of the flow, such as turbulence fluctuations, shocks, discontinuities and acoustic waves, the simulation needs very fine meshes. In this thesis, a robust adjoint based adaptive algorithm is developed for the time-dependent compressible Euler/Navier-Stokes equations. The adaptation is driven by the minimization of the error in quantities of interest such as stresses, drag and lift forces, or the mean value of some quantity. The implementation and analysis are validated in computational tests, both with respect to the stabilization and the duality based adaptation. / QC 20110627
49

Estudo numérico da influência da geometria de bocais convergente-divergente em escoamentos supersônicos

Berchon, Luciano da Silva January 2016 (has links)
O comportamento do escoamento supersônico no interior de bocais convergente-divergente retangulares é investigado numericamente, comparando-se quatro bocais com diferentes seções divergentes, com a mesma razão de aspecto AR=1.14 e mesma relação áreas da saída e da garganta dos bocais NAR=1.43. Os bocais são submetidos a diferentes pressões de admissão do fluido de trabalho, mantendo-se a relação entre a pressão de admissão e de descarga constante NPR=5. As simulações consideram o escoamento em regime permanente, compressível, viscoso, com abordagem baseada na massa específica (abordagem acoplada) , juntamente com o modelo de turbulência − /SST. A qualidade dos resultados é medida empregando-se três níveis de refino da discretização do domínio computacional, observandose a ordem de convergência e o índice de convergência de malhas GCI. Os resultados numéricos mostram que o número de Mach e a temperatura do fluido de trabalho independem da pressão de admissão, ao contrário do comportamento da pressão local e da massa específica. As propriedades do escoamento são fortemente dependentes da variação da geometria, e a variação do ângulo da seção divergente provoca uma mudança direta do número de Mach e inversa da pressão, da temperatura e da massa específica do escoamento no interior dessa seção. As simulações são comparadas com os resultados da teoria isentrópica e mostram que a linha sônica é deslocada do centro geométrico da garganta dos bocais para cada geometria simulada. A comparação com a teoria e com dados experimentais mostra desvios inferiores a 6x10-3 %. O uso do modelo de turbulência − / SST é capaz de resolver o escoamento com boa precisão, prevendo bem seu perfil de velocidades, as ondas de expansão de Prandtl-Meyer, juntamente com as interações dessas ondas com a camada limite. / The behavior of the supersonic flow inside rectangular convergent-divergent nozzle is investigated numerically by comparing four nozzles with different divergent sections, with a common aspect ratio AR=1.14, and the same nozzle exit-to-throat area ratios NAR=1.43. Nozzles are subject to several working fluid inlet pressures, maintaining a constant pressure ratio NPR=5. Simulations assume the flow in steady state, compressible, viscous, using a coupled approach with the turbulence model − /SST. The quality of results is measured by employing three refining levels of the computational domain discretization, observing the order of convergence and the grid convergence index GCI. Numerical results show that the Mach number and the temperature of the working fluid are independent of the inlet pressure, unlike the behavior of local pressure and the density. Flow properties are strongly dependent on the geometry variation, and the change on the angle of divergent section causes a direct effect on the Mach number and inverse on the pressure, the temperature and the density of the flow in this section. Simulations are compared to the results of the isentropic theory and show that the sonic line is offset from the geometric center of the throat nozzle, for each simulated geometry. Results from this work are compared to experimental and theoretical data and show deviations below 6x10-3 %. The − / SST turbulence model is able to solve the flow with good accuracy, and predicts its velocity profile, Prandtl-Meyer expansion waves, and their interactions with the boundary layer.
50

Estudo numérico da influência da geometria de bocais convergente-divergente em escoamentos supersônicos

Berchon, Luciano da Silva January 2016 (has links)
O comportamento do escoamento supersônico no interior de bocais convergente-divergente retangulares é investigado numericamente, comparando-se quatro bocais com diferentes seções divergentes, com a mesma razão de aspecto AR=1.14 e mesma relação áreas da saída e da garganta dos bocais NAR=1.43. Os bocais são submetidos a diferentes pressões de admissão do fluido de trabalho, mantendo-se a relação entre a pressão de admissão e de descarga constante NPR=5. As simulações consideram o escoamento em regime permanente, compressível, viscoso, com abordagem baseada na massa específica (abordagem acoplada) , juntamente com o modelo de turbulência − /SST. A qualidade dos resultados é medida empregando-se três níveis de refino da discretização do domínio computacional, observandose a ordem de convergência e o índice de convergência de malhas GCI. Os resultados numéricos mostram que o número de Mach e a temperatura do fluido de trabalho independem da pressão de admissão, ao contrário do comportamento da pressão local e da massa específica. As propriedades do escoamento são fortemente dependentes da variação da geometria, e a variação do ângulo da seção divergente provoca uma mudança direta do número de Mach e inversa da pressão, da temperatura e da massa específica do escoamento no interior dessa seção. As simulações são comparadas com os resultados da teoria isentrópica e mostram que a linha sônica é deslocada do centro geométrico da garganta dos bocais para cada geometria simulada. A comparação com a teoria e com dados experimentais mostra desvios inferiores a 6x10-3 %. O uso do modelo de turbulência − / SST é capaz de resolver o escoamento com boa precisão, prevendo bem seu perfil de velocidades, as ondas de expansão de Prandtl-Meyer, juntamente com as interações dessas ondas com a camada limite. / The behavior of the supersonic flow inside rectangular convergent-divergent nozzle is investigated numerically by comparing four nozzles with different divergent sections, with a common aspect ratio AR=1.14, and the same nozzle exit-to-throat area ratios NAR=1.43. Nozzles are subject to several working fluid inlet pressures, maintaining a constant pressure ratio NPR=5. Simulations assume the flow in steady state, compressible, viscous, using a coupled approach with the turbulence model − /SST. The quality of results is measured by employing three refining levels of the computational domain discretization, observing the order of convergence and the grid convergence index GCI. Numerical results show that the Mach number and the temperature of the working fluid are independent of the inlet pressure, unlike the behavior of local pressure and the density. Flow properties are strongly dependent on the geometry variation, and the change on the angle of divergent section causes a direct effect on the Mach number and inverse on the pressure, the temperature and the density of the flow in this section. Simulations are compared to the results of the isentropic theory and show that the sonic line is offset from the geometric center of the throat nozzle, for each simulated geometry. Results from this work are compared to experimental and theoretical data and show deviations below 6x10-3 %. The − / SST turbulence model is able to solve the flow with good accuracy, and predicts its velocity profile, Prandtl-Meyer expansion waves, and their interactions with the boundary layer.

Page generated in 0.1308 seconds