• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 10
  • 10
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 21
  • 17
  • 15
  • 15
  • 15
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Développement d'une cible polarisée de pur HD : Analyse et distillation du HD Diffusion compton virtuelle résonante sur le nucléon à TJNAF

Bouchigny, Sylvain 23 April 2004 (has links) (PDF)
AUCUN
22

An Investigation of the Isovector Giant Quadrupole Resonance in 209Bi using Polarized Compton Scattering

Henshaw, Seth January 2010 (has links)
<p>&#65279;<p></p><p>Giant multipole resonances are a fundamental property of nuclei and</p><p>arise from the collective motion of the nucleons inside</p><p>the nucleus. Careful studies of these resonances and their properties provides</p><p>insight into the nature of nuclear matter and constraints</p><p>which can be used to test our theories. </p><p></p></p><p><p></p><p>An investigation of the Isovector Giant Quadrupole Resonance (IVGQR)</p><p>in <sup>209</sup>Bi has been preformed using the High Intensity &gamma;-ray</p><p>Source (HI&gamma;S) facility. Intense nearly monochromatic</p><p>polarized &gamma;-rays were incident upon a <sup>209</sup>Bi target producing</p><p>nuclear Compton scattered &gamma;-rays that were detected using the HI&gamma;S</p><p>NaI(Tl) Detector Array (HINDA). The HINDA array consists of six</p><p>large (10''x10'') NaI(Tl) core crystals, each surrounded by an</p><p>optically segmented 3'' thick NaI(Tl) annulus. The scattered &gamma;-rays</p><p>both parallel and perpendicular to the plane of polarization were</p><p>detected at scattering angles of 55&deg; and 125&deg; with</p><p>respect to the beam axis. This was motivated by the realization that</p><p>the term representing the interference between the electric dipole</p><p>(E1) and electric quadrupole (E2) amplitudes, which appears in the</p><p>theoretical expression for the ratio of the polarized cross sections,</p><p>has a sign difference between the forward and backward angles and also</p><p>changes sign as the incident &gamma;-ray energy is scanned over the E2</p><p>resonance energy. The ratio of cross sections perpendicular and</p><p>parallel to the plane of polarization of the incident &gamma;-ray were</p><p>measured for thirteen different incident &gamma;-ray energies between 15 and</p><p>26 MeV at these two angles and used to extract the parameters of the</p><p>IVGQR in <sup>209</sup>Bi.</p><p></p></p><p><p></p><p>The polarization ratio was calculated at 55&deg; and</p><p>125&deg; using a model consisting of E1 and E2 giant resonances as</p><p>well as a modified Thomson scattering amplitude. The parameters of the E1 giant</p><p>resonance came from previous measurements of the Giant Dipole</p><p>Resonance (GDR) </p><p>in <sup>209</sup>Bi. The finite size of the nucleus was</p><p>accounted for by introducing a charge form factor in the (modified)</p><p>Thomson amplitude. This form factor was obtained from</p><p>measurements of the charge density in inelastic electron scattering</p><p>experiments. </p><p></p></p><p><p></p><p>The resulting curves were fit to the data by varying the</p><p>E2 parameters until a minimum value of the &chi;<sup>2</sup> was found.</p><p>The resulting parameters from the fit yield an IVGQR in <sup>209</sup>Bi</p><p>located at E<sub>res</sub>=23.0&plusmn;0.13(stat)&plusmn;0.25(sys) MeV</p><p>with a width of &Gamma;=3.9&plusmn;0.7(stat)&plusmn;1.3(sys) MeV and a</p><p>strength of 0.56&plusmn;0.04(stat)&plusmn;0.10(sys) Isovector Giant</p><p>Quadrupole Energy Weighted Sum Rules (IVQEWSRs).</p><p></p></p><p><p></p><p>The ability to make precise measurements of the parameters of the</p><p>IVGQR demonstrated by this work opens up new challenges to both</p><p>experimental and theoretical work in nuclear structure. A detailed</p><p>search for the missing sum rule strength in the case of <sup>209</sup>Bi should</p><p>be performed. In addition, a systematic study of a number of nuclei</p><p>should be studied with this technique in order to carefully examine</p><p>the A dependence of the energy, width and sum rule strength of the</p><p>IVGQR as a function of the mass number A. The unique properties of</p><p>the HI&gamma;S facility makes it the ideal laboratory at which to perform</p><p>these studies.</p><p></p></p><p><p></p><p>Such a data base will provide more stringent tests of nuclear</p><p>theory. The effective parameters of collective models can be fine</p><p>tuned to account for such precision data. This should lead to new</p><p>insights into the underlying interactions responsible for the nature</p><p>of the IVGQR. Furthermore, with the recent advances in computational</p><p>power and techniques, microscopic shell model based calculations</p><p>should be possible and could lead to new insights into the underlying</p><p>properties of nuclear matter which are responsible for the collective</p><p>behavior evidenced by the existence and properties of the IVGQR.</p><p></p></p> / Dissertation
23

Compton Scattering and Renormalization of Twist Four Operators

January 2016 (has links)
abstract: In this thesis, I present the study of nucleon structure from distinct perspectives. I start by elaborating the motivations behind the endeavors and then introducing the key concept, namely the generalized parton distribution functions (GPDs), which serves as the frame- work describing hadronic particles in terms of their fundamental constituents. The second chapter is then devoted to a detailed phenomenological study of the Virtual Compton Scattering (VCS) process, where a more comprehensive parametrization is suggested. In the third chapter, the renormalization kernels that enters the QCD evolution equations at twist- 4 accuracy are computed in terms of Feynman diagrams in momentum space, which can be viewed as an extension of the work by Bukhvostov, Frolov, Lipatov, and Kuraev (BKLK). The results can be used for determining the QCD background interaction for future precision measurements. / Dissertation/Thesis / Doctoral Dissertation Physics 2016
24

Study of generalized Radon transforms and applications in Compton scattering tomography / Étude de transformées de Radon généralisées et applications en tomographie Compton

Rigaud, Gaël 20 November 2013 (has links)
Depuis l'avènement des premiers appareils imageurs par rayonnement ionisant initié par les prix Nobel Godfrey Newbold Hounsfield et Allan MacLeod Cormack en 1979, le besoin en de nouvelles techniques d'imagerie non invasives n'a cessé de croître. Ces techniques s'appuient sur les propriétés de pénétration dans la matière des rayonnements X et gamma pour détecter une structure cachée sans avoir à détruire le milieu exposé. Elles sont employées dans de nombreux domaines allant de l'imagerie médicale au contrôle non destructif en passant par le contrôle environnemental. Cependant les techniques utilisées jusqu'à maintenant subissent de fortes dégradations dans la qualité des mesures et des images reconstruites. Généralement approchées par un bruit, ces dégradations exigent d'être compensées ou corrigées par des dispositifs de collimation et de filtrage souvent coûteux. Ces dégradations sont principalement dues aux phénomènes de diffusion qui peuvent constituer jusqu'à 80 % du rayonnement émis en imagerie biomédicale. Dès les années 80 un nouveau concept a vu le jour pourcontourner cette difficulté : la tomographie Compton. Cette nouvelle approche propose de mesurer le rayonnement dit diffusé en se plaçant dans des gammes d'énergie (140−511 keV) où l'effet Compton est le phénomène de diffusion prépondérant. L'exploitation de tels dispositifs d'imagerie nécessite une compréhension profonde des interactions rayonnement/matière afin de proposer un modèle, cohérent avec les données mesurées, indispensable à la reconstruction d'images. Dans les systèmes d'imagerie conventionnels (qui mesurent le rayonnement primaire), la transformée de Radon définie sur les lignes droites est apparue comme le modèle naturel. Mais en tomographie Compton, l'information mesurée est liée à l'énergie de diffusion et ainsi à l'angle de diffusion.Ainsi la géométrie circulaire induite par le phénomène de diffusion rend la transformée de Radon classique inadaptée. Dans ce contexte, il devient nécessaire de proposer des transformées de type Radon sur des variétés géométriques plus larges.L'étude de la transformée de Radon sur de nouvelles diversités de courbes devient alors nécessaire pour répondre aux besoins d'outils analytiques de nouvelles techniques d'imagerie. Cormack, lui-même, fut le premier à étendre les propriétés de la transformée de Radon classique à une famille de courbes du plan. Par la suite plusieurs travaux ont été menés dans le but d'étudier la transformée de Radon définie sur différentes variétés de cercles, des sphères, des lignes brisées pour ne citer qu'eux. En 1994 S.J. Norton proposa la première modalité de tomography Compton modélisable par une transformée de Radon sur lesarcs de cercle, la CART1. En 2010 Nguyen et Truong établirent l'inversion de la transformée de Radon sur les arcs de cercle, CART2, permettant de modéliser la formation d'image dans une nouvelle modalité de tomographie Compton. La géométrie des supports d'intégration impliqués dans de nouvelles modalitésde tomographie Compton les conduirent à démontrer l'invertibilité de la transformée de Radon définie sur une famille de courbes de type Cormack, appelée C_alpha. Ils illustrèrent la procédure d'inversion dans le cadre d'une nouvelle transformée, la CART3 modélisant une nouvelle modalité de tomographie Compton.En nous basant sur les travaux de Cormack et de Truong et Nguyen, nous proposons d'établir plusieurs propriétés de la transformée de Radon définie sur la famille C_alpha et plus particulièrement sur C1. Nous avons ainsi démontré deux formules d'inversion qui reconstruisent l'image d'origine via sa décompositionharmonique circulaire et celle de sa transformée et qui s'apparentent à celles établies par Truong and Nguyen. Nous avons enfin établi la bien connue rétroprojection filtrée ainsi que la décomposition en valeurs singulières dans le cas alpha = 1. L'ensemble des résultats établis dans le cadre de cette étude apporte des réponses concrètes a / Since the advent of the first ionizing radiation imaging devices initiated by Godfrey Newbold Hounsfield and Allan MacLeod Cormack, Nobel Prizes in 1979, the requirement for new non-invasive imaging techniques has grown. These techniques rely upon the properties of penetration in the matter of X and gamma radiation for detecting a hidden structure without destroying the illuminated environment. They are used in many fields ranging from medical imaging to non-destructive testing through. However, the techniques used so far suffer severe degradation in the quality of measurement and reconstructed images. Usually approximated by a noise, these degradations require to be compensated or corrected by collimating devices and often expensive filtering. These degradation is mainly due to scattering phenomena which may constitute up to 80% of the emitted radiation in biological tissue. In the 80's a new concept has emerged to circumvent this difficulty : the Compton scattering tomography (CST).This new approach proposes to measure the scattered radiation considering energy ranges ( 140-511 keV) where the Compton effect is the phenomenon of leading broadcast. The use of such imaging devices requires a deep understanding of the interactions between radiation and matter to propose a modeling, consistent with the measured data, which is essential to image reconstruction. In conventional imaging systems (which measure the primary radiation) the Radon transformdefined on the straight lines emerged as the natural modeling. But in Compton scattering tomography, the measured information is related to the scattering energy and thus the scattering angle. Thus the circular geometry induced by scattering phenomenon makes the classical Radon transform inadequate.In this context, it becomes necessary to provide such Radon transforms on broader geometric manifolds.The study of the Radon transform on new manifolds of curves becomes necessary to provide theoretical needs for new imaging techniques. Cormack, himself, was the first to extend the properties of the conventional Radon transform of a family of curves of the plane. Thereafter several studies have been done in order to study the Radon transform defined on different varieties of circles, spheres, broken lines ... . In 1994 S.J. Norton proposed the first modality in Compton scattering tomography modeled by a Radon transform on circular arcs, the CART1 here. In 2010, Nguyen and Truong established the inversion formula of a Radon transform on circular arcs, CART2, to model the image formation in a new modality in Compton scattering tomography. The geometry involved in the integration support of new modalities in Compton scattering tomography lead them to demonstrate the invertibility of the Radon transform defined on a family of Cormack-type curves, called C_alpha. They illustrated the inversion procedure in the case of a new transform, the CART3, modeling a new modeling of Compton scattering tomography. Based on the work of Cormack and Truong and Nguyen, we propose to establish several properties of the Radon transform on the family C_alpha especially on C1. We have thus demonstrated two inversion formulae that reconstruct the original image via its circular harmonic decomposition and itscorresponding transform. These formulae are similar to those established by Truong and Nguyen. We finally established the well-known filtered back projection and singular value decomposition in the case alpha = 1. All results established in this study provide practical problems of image reconstruction associated with these new transforms. In particular we were able to establish new inversion methods for transforms CART1,2,3 as well as numerical approaches necessary for the implementation of these transforms. All these results enable to solve problems of image formation and reconstruction related to three Compton scattering tomography modalities.In addition we propose to improve models and algorithms es
25

Probing the proton structure through deep virtual Compton scattering at COMPASS, CERN / Etude de la structure interne du proton par diffusion Compton virtuelle à COMPASS, CERN

Vidon, Antoine 01 October 2019 (has links)
La diffusion Compton virtuelle (DVCS) est un processus idéal pour étudier la structure interne du proton. Cette réaction exclusive permet d’accéder aux distributions de partons généralisées (GPDs) qui encodent les corrélations entre impulsion longitudinale et position transverse des partons à l’intérieur du proton. Le DVCS consiste à sonder le proton au moyen d’un photon virtuel de grande virtualité pour produire dans l’état final un unique photon réel de grande énergie tout en laissant le proton intact.A COMPASS au CERN, où deux années de données ont été collectées en 2016 et 2017 afin de mesurer la section efficace du processus DVCS, le photon virtuel est issu de la diffusion d’un faisceau de μ⁺ ou de μ⁻ polarisé de 160 GeV sur une cible d’hydrogène liquide. Toutes les particules de la réaction sont détectées dans l’expérience : le muon incident est détecté dans le télescope du faisceau, le muon diffracté et le photon réel sont détectés à l’avant dans le spectromètre et les trois calorimètres tandis que le proton de recul est détecté dans un détecteur de temps de vol placé autour de la cible.Je présente dans cette thèse l’état de l’analyse du processus DVCS sur les données collectées à COMPASS en 2016. Après un rappel du contexte théorique et expérimental, je décris l’expérience COMPASS. Je détaille ensuite mon travail de calibration du détecteur de proton de recul et de détermination de la position exacte de la cible de 2 cm de diamètre et 2.5 m de longueur. J’étudie dans la partie suivante la sélection de différents canaux de physique permettant de contrôler de manière systématique la qualité des détecteurs : la diffusion profondément inélastique (DIS) qui implique le télescope du faisceau et le spectromètre, la production exclusive de ρ⁰ qui inclut aussi le détecteur de temps de vol ; puis je présente la première analyse de la production exclusive de photons uniques qui implique en plus les trois calorimètres. Dans une dernière partie j’évoque les étapes nécessaires à la détermination de la section efficace du DVCS à partir de cette sélection, et je présente les premiers résultats issus de la simulation associée. / Virtual Compton Scattering (DVCS) is an ideal process to study the internal structure of proton. This exclusive reaction provides access to generalised parton distributions (GPDs), which encode the correlations between longitudinal momentum and transverse position of partons inside the proton. DVCS consists in probing a proton with a virtual photon of high virtuality, in order to produce a single high energy real photon while leaving the proton intact in the final state.At COMPASS at CERN, where two years of data were collected in 2016 and 2017 to measure the DVCS cross section, the virtual photon is produced by scattering of a 160 GeV polarised μ⁺ or μ⁻ beam on a liquid hydrogen target. All particles are detected in the experiment: the incident muon is detected in the beam telescope, the diffracted muon and the real photon are detected in the forward spectrometer and the three calorimeters, while the recoil proton is detected in a time-of-flight detector positioned around the target.In this thesis I present the state of the analysis of the DVCS process on the data collected at COMPASS in 2016. After a reminder of the theoretical and experimental context, I describe the COMPASS experiment. I then detail my work on calibrating the recoil proton detector and determining the the exact position of the 2 cm diameter and 2.5 m long target. In the next section, I study the selection of different physics channels used to systematically control detector quality: Deep Inelastic Scattering (DIS) which involves the beam-telescope and spectrometer, exclusive ρ⁰ production which requires the addition of the time-of-flight detector and I follow with the first analysis of the exclusive single photon production which depends as well on the calorimetres quality. In a last part, I discuss the necessary steps needed to extract the DVCS cross-section out of this event selection, and present the first results associated to the Monte-Carlo simulation.
26

Reconstruction tridimensionnelle des objets plats du patrimoine à partir du signal de diffusion inélastique / Three-dimensional reconstruction of flat heritage objects based on Compton scattering tomography.

Guerrero prado, Patricio 05 July 2018 (has links)
La caractérisation tridimensionnelle de matériaux anciens plats est restée une activité non évidente à accomplir par des méthodes classiques de tomographie à rayons X en raison de leur morphologie anisotrope et de leur géométrie aplatie.Pour surmonter les limites de ces méthodologies, une modalité d'imagerie basée sur le rayonnement diffusé Compton est étudiée dans ce travail. La tomographie classique aux rayons X traite les données de diffusion Compton comme du bruit ajouté au processus de formation d'image, tandis que dans la tomographie du rayonnement diffusé, les conditions sont définies de sorte que la diffusion inélastique devienne le phénomène dominant dans la formation d'image. Dans ces conditions, les rotations relatives entre l'échantillon et la configuration d'imagerie ne sont plus nécessaires. Mathématiquement, ce problème est résolu par la transformée de Radon conique. Le problème direct où la sortie du système est l'image spectrale obtenue à partir d'un objet d'entrée est modélisé. Dans le problème inverse une estimation de la distribution tridimensionnelle de la densité électronique de l'objet d'entrée à partir de l'image spectrale est proposée. La faisabilité de cette méthodologie est supportée par des simulations numériques. / Three-dimensional characterization of flat ancient material objects has remained a challenging activity to accomplish by conventional X-ray tomography methods due to their anisotropic morphology and flattened geometry.To overcome the limitations of such methodologies, an imaging modality based on Compton scattering is studied in this work. Classical X-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able to avoid relative rotations between the sample and the imaging setup. Mathematically this problem is addressed by means of the conical Radon transform. A model of the direct problem is presented where the output of the system is the spectral image obtained from an input object. The inverse problem is addressed to estimate the 3D distribution of the electronic density of the input object from the spectral image. The feasibility of this methodology is supported by numerical simulations.
27

Incoherent neutron scattering studies of select inorganic systems : I. Nuclear momentum measurements of multiple masses, II. The dynamics of coordinated ammonia in zeolite A

Seel, Andrew G. January 2012 (has links)
Spectroscopic measurements are detailed within this thesis, utilising incoherent neutron scattering to examine the dynamics of various condensed-matter systems, from nanosecond to sub-femtosecond timescales. The body of this work is divided into two distinct areas of research. I. Nuclear Momentum Measurements of Multiple Masses Deep inelastic neutron scattering (DINS) is used to probe the nuclear momentum distributions and kinetic energies of individual atomic species in sodium hydride (both in bulk and as nanoparticulates within a silica matrix), enriched lithium-7 fluoride and lithium tetra-ammoniate. Extension of DINS to examine heavier (M>4amu) nuclei is detailed, accomplished by the application of a simple stoichiometric fixing technique within the standard DINS theory and analysis protocols. The validity and accuracy of such simultaneous measurements are discussed. II. The Dynamics of Coordinated Ammonia in Zeolite A Inelastic neutron scattering (INS) and quasielastic neutron scattering (QENS) are utilised in the examination of vibrational and stochastic dynamics of the ammonia molecule, as coordinated to the internal surface of a zeolite host. Both sodium and copper-exchanged forms of zeolite-A are studied, with proton-weighted, low energy phonon-modes and rotational processes being observed and assigned.
28

Polarized positron sources for the future linear colliders / Sources de positrons polarisés pour les futurs collisionneurs linéaires

Chaikovska, Iryna 10 December 2012 (has links)
Au cours des prochaines années les expériences au grand collisionneur de hadrons (LHC) au CERN vont explorer méticuleusement les lois fondamentales de la physique des hautes énergies à une énergie qui n'a jamais été atteinte auparavant. Afin de compléter les recherches du LHC, plusieurs projets de Collisionneur Linéaire (CL) de lepton de prochaine génération utilisant des collisions e+ – e- ont été proposé pour permettre des études de haute précision. Dans ce cadre il existe deux grands projets: le collisionneur linéaire international (ILC) pour explorer une plage d'énergie dans le centre de masse de s = 0.5 – 1 TeV et le collisionneur linéaire compact (CLIC) qui devrait fonctionner à s = 0.5 – 3 TeV. Le programme de physique du futur CL profitera grandement de collisions où les deux faisceaux seront polarisés. Cette thèse présente la source de positrons polarisés qui est un élément clef du future CL. Dans ce contexte, les différents concepts de source de positrons polarisés sont présentés en mettant en avant les principaux défis technologiques. Plus spécifiquement, le centre d'intérêt principal est sur la source de positrons Compton adoptée par CLIC comme option préférée pour l'amélioration de la future source de positrons. Dans cette source, les rayons gamma de haute énergie produits par diffusion Compton sont envoyés sur une cible où les interactions électromagnétiques produisent des positrons dans des e+ – e- . Pour améliorer l'efficacité de l'étape de production de rayons gamma, une ligne de multiples points de collisions est proposée intégrée à un linac à récupération d'énergie. Les simulations de la production de positrons, de leur capture et de leur accélération initiale permettent d'estimer l'efficacité de production de positrons et de fournir une paramétrisation simple de la source de positrons polarisés basée sur l'interaction Compton dans la perspective des besoins futurs du CL. L'option d'une source Compton basée sur un anneau de stockage appelé anneau Compton est aussi décrite. La principale contrainte de ce concept provient de la dynamique faisceaux à cause de la grande dispersion en énergie et l'augmentation de la longueur du paquet ce qui affecte le taux de production des rayons gamma. Une contribution théorique originale est présentée pour calculer la dispersion en énergie induite par la diffusion Compton. De plus, une expérience pour tester la production de rayons gamma par diffusion Compton en utilisant un système laser au fait de la technologie et développé au LAL est en cours dans le cadre du projet "MightyLaser" à l'ATF, KEK. La configuration expérimentale ainsi que les résultats principaux obtenus sont discutés en détails. Les recherches décrites dans cette thèse montrent que la source de positrons polarisés basée sur la diffusion Compton est un candidat prometteur pour la source de positrons polarisés du futur CL. Pour atteindre les performances requises des travaux supplémentaires et de la R&D sont nécessaires dans le domaine des lasers de puissance, des cavités optiques et des accélérateurs d'électrons à fort courant tels que les linacs à récupération d'énergie. / During the next few years experiments at the Large Hadron Collider (LHC) at CERN will continue to explore carefully fundamental high energy physics principles at a an energy domain which has never been reached before. Possible designs for the next-generation lepton Linear Collider (LC) based on e+–e- collisions have already been proposed to perform high precision studies complementary to the LHC. In this framework, there are two large projects: the International Linear Collider (ILC) exploring a centre-of-mass energy range of de s = 0.5 – 1 TeV and the Compact Linear Collider (CLIC) expected to operate at s = 0.5 – 3 TeV. The physics programme of the future LC will benefit strongly of colliding both polarised electron and positron beams. This thesis introduces the polarized positron source as one of the key element of the future LC. In this context, the different schemes of the polarized positron source are described highlighting the main issues in this technology. In particular, the main focus is on the Compton based positron source adopted by the CLIC as a preferred option for the future positron source upgrade. In this case, the circularly polarized high energy gamma rays resulting from Compton scattering are directed to a production target where an electromagnetic cascade gives rise to the production of positrons by e+–e- pair conversion. To increase the efficiency of the gamma ray production stage, a multiple collision point line integrated in energy recovery linac is proposed. The simulations of the positron production, capture and primary acceleration allow to estimate the positron production efficiency and provide a simple parametrization of the Compton based polarized positron source in the view of the future LC requirements. The storage ring based Compton source option, so-called Compton ring, is also described. The main constraint of this scheme is given by the beam dynamics resulting in the large energy spread and increased bunch length affecting the gamma ray production rate. An original theoretical contribution is shown to calculate the energy spread induced by Compton scattering. Moreover, an experiment to test the gamma ray production by Compton scattering using a state-of-art laser system developed at LAL has been conducted in the framework of the "MightyLaser" project at the ATF, KEK. The experimental layout as well as the main results obtained are discussed in details. The studies carried out in this thesis show that the polarized positron source based on Compton scattering is a promising candidate for the future LC polarized positron source. To attain the required performance, further developments and R&D in field of the high power laser systems, optical cavities and high current electron accelerators such as the energy recovery linacs should be pursued in the future.
29

Pulsed Laser Injected Enhancement Cavity for Laser-electron Interaction / Cavités optiques en régime impulsionnel pour l'intéraction laser-électron

You, Yan 03 June 2014 (has links)
RésuméLa diffraction et la diffusion de rayons X sont utilisées dans de nombreux domaines de la physique, de la médecine et de la technologie. Des faisceaux de haute brillance sont néanmoins requis pour améliorer les performances de ces techniques. L’utilisation de la diffusion Compton d’un laser sur un faisceau d’électrons présente un grand intérêt pour la production de rayons X. Ce processus permet l’emploi d’un anneau de stockage d’électrons compacts et d’un résonateur optique pour accroître la puissance laser. Avec un tel système, un taux de collision laser-électron supérieur au méga Hertz est envisageable permettant d’atteindre un flux de rayons X de l’ordre de 10¹³ photons/s. Dans le premier chapitre, je décris les motivations pour le développement d’une source de rayons X basée sur la diffusion Compton et utilisant un résonateur optique. Je détermine aussi les performances que l’on peut attendre de ce type de sources ainsi que l’état de l’art actuel dans ce domaine. Dans le deuxième chapitre, je décris le comportement et les propriétés des résonateurs optiques en régime impulsionnel. J’introduis la notion de phase CEP (‘carrier envelope phase’) et je montre la nécessité de contrôler à la fois la fréquence de répétition de l’oscillateur laser et cette phase CEP. Le chapitre 3 est consacré aux oscillateurs fibrés à blocage de mode. Je montre les performances du laser que j’ai construit en utilisant le phénomène de rotation de polarisation non-linéaire.La méthode d’asservissement laser-résonateur optique ‘tilt locking’ est introduite au chapitre 4. Je décris tout d’abord les études de simulations et le montage expérimental qui ont permis de tester la méthode en régime impulsionnel. Je donne ensuite les résultats expérimentaux qui démontrent la faisabilité de la méthode ‘tilt locking’ en régime impulsionnel. J’effectue aussi une comparaison expérimentale des performances de la méthode ‘tilt locking’ avec la méthode classique ‘Pound-Drever-Hall’. Je termine le chapitre en indiquant une difficulté expérimentale de la méthode pour générer plusieurs signaux d’erreurs.Je décris la conception du système optique de la machine Compton TTX de l’université Tsinghua dans le chapitre 5. Les performances attendues pour cette machine sont des flux de rayons X compris entre 10¹º et 10¹³ photons/s. / X-ray diffraction and scattering, X-ray spectroscopy, and X-ray crystallography are widely used in the life sciences, material science, and medical diagnosis. High-quality and high-brightness X-rays are a strong requirement to improve applications. Inverse Compton scattering (ICS) X-ray source has attracted great interests worldwide lately. To significantly enhance the average X-ray photon flux, a compact electron storage-ring combined with a high finesse optical enhancement cavity (OEC) can be utilized. In such a system, the collision rate between the electron beam and the laser pulse is greatly increased to the MHz range, enabling a photon flux up to 10¹³ph/s.In the first chapter, I describe the motivation behind the development of OEC based on ICS X-ray source. The characteristics of this kind of X-ray source are summarized, compared to those of the conventional low-repetition-rate Terawatt laser system based on ICS X-ray source. The latest progress and research status of OEC based on ICS X-ray source are presented. Pulsed-laser injected high-finesse OEC stacking theory and properties are discussed in Chapter 2. Not only does the OEC based on ICS X-ray source require the laser pulse repetition rate to be matched to the free spectral range (FSR) of the cavity, where both also have to match the electron storage-ring circulation frequency. In addition, we have to match the phase shift of the laser repetition rate to the phase offset introduced by the dispersion of the cavity mirrors, since our cavity finesse design value is quite high. The stacking theory is analyzed in the frequency domain. Cavity properties, including cavity mirror dispersion, finesse, and FSR, are discussed in detail. A laser frequency comb and OEC coupling is analyzed also. The laser source development is presented in Chapter 3. We constructed a mode-locked fiber laser based on nonlinear polarization rotation. The locking model, locking techniques, and the theory, simulations and experimental tests of tilt locking (TL) in the pulsed laser injected high-finesse OEC are discussed in Chapter 4. We succeeded in locking a pulsed laser to a high-finesse cavity with the TL technique. The experimental results show that the TL and the Pound–Drever–Hall techniques have the same performance: stable locking, high sensitivity, and the same power coupling rate for picosecond laser pulse case, while the test results for full spectrum TL locking show that it is uneasy to align the split-photodiode to the beam waist.Based on the above experimental study and tests, we design the OEC system for Tsinghua University X-ray project in Chapter 5. The expected X-ray flux is 10¹º to 10¹³ ph/s. We detail every subsystem requirement.
30

Étude de la production de rayonnement X par diffusion Compton sur l’installation ELSA / Study of Compton scattering X-rays production on a linear electron accelerator.

Chauchat, Anne-Sophie 24 January 2011 (has links)
La diffusion Compton est un moyen de produire des rayons X en réalisant des collisions entre un faisceau d'électrons relativistes et un faisceau laser. Par analogie avec le rayonnement synchrotron, le faisceau laser joue le rôle d'onduleur, ce qui entraîne les électrons dans un mouvement d'oscillation. Le rayonnement émis par les électrons en mouvement, dont certaines caractéristiques sont proches de celle du rayonnement synchrotron, peut être produit sur des machines relativement compactes. L'installation ELSA du CEA DAM DIF dispose d'un accélérateur d'électrons (17 MeV) et d'un laser (532 nm) dont les caractéristiques sont favorables à la réalisation d'une expérience de production de rayonnement X par diffusion Compton. La faible probabilité d'interaction et les petites dimensions des faisceaux (< 100 µm, 30 ps (LTMH)) obligent à optimiser avec soin le recouvrement spatial et temporel des impulsions. La visualisation des deux faisceaux en simultanée se fait grâce à un biseau en aluminium renvoyant les images des deux faisceaux vers les caméras CCD et à balayage de fente. La détection du rayonnement X produit (d'énergie < 11 keV) est réalisée par des écrans radio-luminescents à mémoire. Ces écrans, très sensibles au rayonnement de basse énergie, permettent de visualiser le profil du rayonnement et de réaliser la radiométrie du signal. Ces écrans ont également été utilisés en tant que scintillateurs couplés à un photomultiplicateur pour contrôler en temps réel le rendement de l'interaction. L'analyse des résultats expérimentaux obtenus confirme les résultats des simulations. / Compton scattering by collisions between relativistic electron beam and laser beam is a way to produce X-rays. Laser beam is seen as an undulator which gives electrons a periodic waved motion. This radiation emitted by electrons motion has some characteristics close to those of synchrotron radiation but can be produced by smaller machines. ELSA facility at CEA DAM DIF is a linear electron accelerator (17 MeV) running with a photoinjector and a laser (532 nm). Characteristics of electrons and laser beam are favourable to a Compton scattering X-rays experiment. Small interaction probability and small beam sizes (< 100 µm, 30 ps (LTMH)) require a careful optimization of spatial and temporal pulses covering. An aluminium bevel-edge allows visualizing beams with CCD and streak cameras. Imaging plates are used as < 11 keV X-rays detectors. These detectors are very sensitive to low signal-to-noise ratio at low energy and give the beam profile. The imaging plates were coupled with a photomultiplier to manage the yield in real time. Experimental results are confirmed by simulations.

Page generated in 0.4252 seconds