Spelling suggestions: "subject:"computer aided manufacturing"" "subject:"coomputer aided manufacturing""
201 |
Desenvolvimento de um objeto simulador "Canis Morphic" utilizando impressora 3D para aplicação em dosimetria na área de radioterapia veterinária / Development of a phantom "Canis Morphic" using 3D printer for use in dosimetry in veterinary radiation therapyVENEZIANI, GLAUCO R. 08 November 2017 (has links)
Submitted by Marco Antonio Oliveira da Silva (maosilva@ipen.br) on 2017-11-08T16:10:07Z
No. of bitstreams: 0 / Made available in DSpace on 2017-11-08T16:10:07Z (GMT). No. of bitstreams: 0 / O aumento na longevidade humana fez surgir uma série de doenças com a idade; em contrapartida o avanço da medicina possibilitou o diagnóstico precoce e o tratamento de várias doenças antes incuráveis. Esse cenário atual estendese também aos animais domésticos (cães e gatos - PETs) que dobraram sua expectativa de vida nas últimas décadas, fato que os humanos demoraram séculos para alcançar. Do mesmo modo que os humanos, esse aumento na longevidade dos animais veio acompanhado de doenças relacionadas com a idade, entre elas o câncer. Uma das terapias utilizadas atualmente no tratamento do câncer é a radioterapia, técnica que utiliza a radiação ionizante para destruir as células tumorais (volume-alvo) com mínimo prejuízo aos tecidos circunvizinhos sadios (órgãos de risco). Essa técnica exige a realização periódica de testes de controle de qualidade, incluindo a dosimetria com a utilização de objetos simuladores equivalentes ao tecido, de modo a verificar a dose de radiação recebida pelo paciente em tratamento e compará-la posteriormente com a dose de radiação calculada pelo sistema de planejamento. A rápida expansão do mercado de impressoras 3D abriu caminho para uma revolução na área da saúde. Atualmente os objetos simuladores por impressão 3D estão sendo usados em planejamentos de Radioterapia para a localização espacial e mapeamento das curvas de isodose, realizando, assim, um planejamento mais personalizado para cada campo de radiação, além da confecção de implantes dentais, customização de próteses e confecção de bólus. Diante do exposto esse trabalho projetou e desenvolveu um objeto simulador chamado de \"Canis Morphic\" utilizando uma impressora 3D e materiais tecido-equivalentes para a realização dos testes de controle de qualidade e otimização das doses na área de Radioterapia em animais (cães). Os resultados obtidos demonstraram-se promissores na área de criação de simuladores por impressão 3D, com materiais de baixo custo, para aplicação no controle de qualidade em Radioterapia veterinária. / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
|
202 |
Ingénierie de la chaîne numérique d'industrialisation : proposition d'un modèle d'interopérabilité pour la conception-fabrication intégrées / Toward a bidirectional and continuous digital chain from CAD to CNC machine : aeronautical industry applicationDanjou, Christophe 03 December 2015 (has links)
Ce travail s'intéresse à la gestion d'information techniques et connaissances métiers issues de la production pour assurer l'interopérabilité et la continuité de la chaîne numérique. Dans un contexte d'entreprise étendue et de développement des technologies de l’information pour l'usine du futur, l'industrie aéronautique s'oriente vers une intégration flexible et agile des phases de conception et fabrication pour l'obtention de pièces bonnes du premier coup. C'est pour assurer la maîtrise des processus et la capitalisation des savoir-faire métier issus de la fabrication que ces travaux adressent la problématique suivante : comment élaborer un modèle d'interopérabilité de la chaîne numérique d'industrialisation, pour assurer une intégration agile de la conception et de la fabrication ? Pour ce faire, nous définissons deux propositions : OntoSTEP-NC pour permettre l'extraction et la structuration des données issues de la fabrication et Closed-Loop Manufacturing pour permettre l'intégration et la réutilisation des connaissances métiers capitalisées au niveau de l'industrialisation. Les apports de ces propositions se retrouvent dans la définition d'un cadre d'interopérabilité pour l'usine du futur mais également dans les enjeux tels que la définition de bonnes pratiques pour l'entreprise étendue en vue d'une harmonisation des processus de fabrication. Ces travaux ont été validés au travers d'un démonstrateur sur un cas d'étude industriel comportant plusieurs scénarii. / This work focuses on the knowledge and the data management extracted from the manufacturing to ensure the interoperability in the digital chain. According to the extended enterprise and the factory of the future context, the aeronautics manufacturers tend to a design and manufacturing integrated platform in order to get a right part the first time.This work focus on manufacturing process control and capitalization of know-how from the manufacturing aiming at answering the following issue : How to enable interoperability for the digital production process in order to ensure an integrated and agile design and manufacturing ? This issue is addressed with two proposals : OntoSTEP-NC which focuses on how to model and structure the manufacturing knowledge from the CNC machine and Closed-Loop Manufacturing which focuses on how to re-use and integrate the information feedback from manufacturing to process engineering. Both combined those two proposals address the main issue of this work defining an interoperability framework for the factory of the future and address trends like the definition of guidelines for manufacturing in extended enterprise context. This work has been validated through a demonstrator and an industrial case study with various scenarios.
|
203 |
Qualification multi-critères des gammes d'usinage : application aux pièces de structure aéronautique en alliage Airware® / Multi-criteria qualification of machining sequence : application to aerospace structural parts made from Airware® alloyHassini, Sami 07 July 2015 (has links)
L’optimisation des gammes d'usinage n’est pas aisée, car elle souffre de deux lacunes importantes. La première est axée sur l'adaptabilité des gammes existantes aux moyens actuels de production et à leurs évolutions au fil des années pour répondre aux évolutions technologiques. Le second point concerne, l’absence de prise en compte du comportement mécanique de la pièce durant l'usinage dans l'élaboration de la gamme. Ces travaux de thèse abordent ces problématiques dans le cadre du projet FUI OFELIA. Ils étudient, dans un premier temps l'influence de la gamme d’usinage sur la déformation de la pièce. L'objectif est de pouvoir prédire le comportement mécanique de la pièce pour identifier les gammes minimisant les déformations. Le second point s'intéresse à l’évaluation multicritères des gammes de fabrication. Les critères retenus prennent en compte la déformation de la pièce, la productivité à travers une estimation rapide des temps d'usinage et la recyclabilité des copeaux obtenus lors de l'usinage. D’autre part, nous proposons un modèle géométrique des états intermédiaires de la pièce durant l’usinage pour à la fois évaluer les gammes de fabrication et conduire les calculs de simulation de la déformation de la pièce durant l’usinage. / The optimization of machining sequences is not easy because it suffers from two major shortcomings. The first focuses on the adaptability of existing ranges to current production facilities and their evolution over the years to respond to technological developments. The second point concerns the lack of consideration in the mechanical behavior of the part during the development of machining sequence. This thesis addresses these in relation to the FUI OFELIA project. At first, they study the influence of the machining parameters on the deformation of the workpiece. The aim is to predict the mechanical behavior of the part to identify recommendations with minimal distortion. The second issue deals with multi-criteria evaluation of manufacturing ranges. The criteria take into account are the deformation of the workpiece, productivity through a quick estimate of machining time and recyclability of chips produced during machining. On the other hand, we propose a geometric model of the intermediate states of the workpiece during machining in order to both assess the manufacturing recommendations and to drive the simulation calculations of the deformation of the workpiece during machining.
|
204 |
Rechnerunterstützung für die Suche nach verarbeitungstechnischen PrinziplösungenMajschak, Jens-Peter 04 November 1997 (has links)
Die hier zur Verfügung gestellte Datei ist leider nicht vollständig, aus technischen Gründen sind die folgenden Anhänge leider nicht enthalten:
Anhang 3: Begriffshierarchie "verarbeitungstechnische Funktion" S. 141
Anhang 4: Begriffshierarchie "Eigenschaftsänderung" S. 144
Anhang 5: Begriffshierarchie "Verarbeitungsgut" S. 149
Anhang 6: Begriffshierarchie "Verarbeitungstechnisches Prinzip" S. 151
Konsultieren Sie die Druckausgabe, die Sie im Bestand der SLUB Dresden finden: http://slubdd.de/katalog?TN_libero_mab21079933:ABKÜRZUNGEN UND FORMELZEICHEN S. 5
1. EINLEITUNG S. 7
2. UNTERSTÜTZUNGSMITTEL FÜR DIE KONZEPTPHASE IN DER VERARBEITUNGSMASCHINEN-KONSTRUKTION - ALLGEMEINE ANFORDERUNGEN, ENTWICKLUNGSSTAND 9
2.1. DIE BEDEUTUNG DER KONZEPTPHASE IN DER VERARBEITUNGSMASCHINENKONSTRUKTION S. 9
2.2. ALLGEMEINE ANFORDERUNGEN AN UNTERSTÜTZUNGSMITTEL FÜR DEN KONSTRUKTEUR ALS
PROBLEMLÖSER S. 13
2.3. SPEZIFIK VERARBEITUNGSTECHNISCHER PROBLEMSTELLUNGEN S. 17
2.3.1. Verarbeitungstechnische Informationen im Konstruktionsprozeß von Verarbeitungsmaschinen S. 17
2.3.2. Komplexität verarbeitungstechnischer Probleme S. 19
2.3.3. Unbestimmtheit verarbeitungstechnischer Probleme S. 21
2.3.4. Beschreibungsspezifik verarbeitungstechnischer Problemstellungen S. 22
2.4. UNTERSTÜTZUNGSMITTEL FÜR DIE KONZEPTPHASE UND IHRE EIGNUNG FÜR DIE
VERARBEITUNGSMASCHINENKONSTRUKTION S. 24
2.4.1. Traditionelle Unterstützungsmittel für die Lösungssuche S. 24
2.4.1.1. Lösungskataloge S. 24
2.4.1.2. Konstruktionsmethodik in der Prinzipphase S. 25
2.4.2. Rechnerunterstützung für die Konstruktion mit Relevanz für die Konzeptphase S. 28
2.4.2.1. Kurzüberblick über Konstruktionsunterstützungssysteme und ihre Einbindung in übergeordnete Systeme S. 28
2.4.2.2. Rechnerunterstützung zum Analysieren S. 31
2.4.2.3. Rechnerunterstützung zum Informieren S. 32
2.4.2.4. Rechnerunterstützung zum Synthetisieren S. 34
2.4.2.5. Rechnerunterstützung zum Bewerten und Auswählen S. 39
2.4.2.6. Integrierende Systeme mit Unterstützung für die Konzeptphase S. 41
2.4.3. Der Wissensspeicher Verarbeitungstechnik S. 43
2.5. SCHLUßFOLGERUNGEN AUS DER ANALYSE DES IST-STANDES S. 46
3. ANFORDERUNGEN AN EINE RECHNERUNTERSTÜTZUNG DER PRINZIPPHASE DER VERARBEITUNGSMASCHINENKONSTRUKTION 47
3.1. FUNKTIONSBESTIMMUNG S. 47
3.1.1. Typisierung der mit dem System zu lösenden Fragestellungen S. 47
3.1.2. Anforderungen an Funktionalität und Dialoggestaltung S. 50
3.2. INHALTLICHE ABGRENZUNG S. 54
3.3. ANFORDERUNGEN AN DIE WISSENSREPRÄSENTATION S. 57
4. INFORMATIONSMODELL DES VERARBEITUNGSTECHNISCHEN PROBLEMRAUMES S. 61
4.1. ÜBERBLICK ÜBER MÖGLICHE DARSTELLUNGSARTEN S. 61
4.1.1. Allgemeiner Überblick S. 61
4.1.1.1. Unterschiede zwischen wissensbasierten Systemen und anderen Wissensrepräsentationsformen S. 61
4.1.1.2. Algorithmische Modellierung S. 62
4.1.1.3. Relationale Modellierung S. 63
4.1.1.4. Darstellungsformen in wissensbasierten Systemen S. 64
4.1.2. Die verwendete Software und ihre Möglichkeiten S. 71
4.2. ÜBERBLICK ÜBER DEN SYSTEMAUFBAU S. 74
4.2.1. Gesamtüberblick S. 74
4.2.2. Sichtenmodell S. 78
4.2.3. Relationale Darstellung von Prinzipinformationen, Kennwerten und Kenngrößen S. 83
4.2.4. Bildinformationen S. 85
4.2.5. Ergänzende Informationen in der Benutzeroberfläche S. 86
4.3. MODELLIERUNG VON WISSENSKOMPONENTEN DER DOMÄNE VERARBEITUNGSTECHNIK S. 87
4.3.1. Abbildung verarbeitungstechnischer Funktionen S. 87
4.3.1.1. Darstellungsarten für verarbeitungstechnische Funktionen - Bedeutung, Verwendung, Probleme S. 87
4.3.1.2. Die Sicht "Verarbeitungstechnische Funktion" S. 89
4.3.1.3. Die Sicht "Eigenschaftsänderung" S. 90
4.3.2. Abbildung von Informationen über Verarbeitungsgüter S. 93
4.3.2.1. Beschreibungskomponenten und ihre Verwendung bei der Lösungssuche S. 93
4.3.2.2. Die Sicht "Verarbeitungsgut" S. 94
4.3.2.3. Abbildung von Verarbeitungsguteigenschaften S. 94
4.3.3. Abbildung verarbeitungstechnischer Prinzipe S. 96
4.3.3.1. Die Sicht "Verarbeitungstechnisches Prinzip" S. 96
4.3.3.2. Die Detailbeschreibung verarbeitungstechnischer Prinzipe S. 97
4.3.4. Verarbeitungstechnische Kenngrößen S. 99
4.3.5. Darstellung von Zusammenhängen mittels Regeln S. 100
4.3.6. Unterstützung der Feinauswahl S. 102
5. PROBLEMLÖSEN MIT DEM BERATUNGSSYSTEM VERARBEITUNGSTECHNIK S. 104
5.1. INTERAKTIVE PROBLEMAUFBEREITUNG S. 104
5.2. BESTIMMUNG DER LÖSUNGSMENGE - GROBAUSWAHL S. 109
5.3. FEINAUSWAHL S. 110
5.4. VERARBEITUNG DER ERGEBNISSE S. 112
6. WISSENSAKQUISITION S. 113
6.1. PROBLEME BEI DER WISSENSAKQUISITION S. 113
6.2. VORSCHLÄGE ZUR UNTERSTÜTZUNG UND ORGANISATION DER AKQUISITION FÜR DAS BERATUNGSSYSTEM VERARBEITUNGSTECHNIK S. 115
7. GEDANKEN ZUR WEITERENTWICKLUNG S. 116
7.1. INHALTLICHER UND FUNKTIONALER AUSBAU DES BERATUNGSSYSTEMS VERARBEITUNGSTECHNIK S. 116
7.1.1. Ergänzung der Sichtenbeschreibung durch weitere Sichten S. 116
7.1.2. Andere Erweiterungsmöglichkeiten S. 117
7.2. EINBINDUNGSMÖGLICHKEITEN FÜR DAS BERATUNGSSYSTEMS VERARBEITUNGSTECHNIK S. 118
8. ZUSAMMENFASSUNG S. 120
LITERATURVERZEICHNIS S. 123
Anhang 1: Beispiele für phasenübergreifende Rechnerunterstützung der Konstruktion 134
Anhang 2: Inhalt der Kerntabelle "Prinzip" S. 138
Anhang 3: Begriffshierarchie "verarbeitungstechnische Funktion" S. 141
Anhang 4: Begriffshierarchie "Eigenschaftsänderung" S. 144
Anhang 5: Begriffshierarchie "Verarbeitungsgut" S. 149
Anhang 6: Begriffshierarchie "Verarbeitungstechnisches Prinzip" S. 151
Anhang 7: Implementierung einer umstellbaren Formel am Beispiel Dichteberechnung S. 158
|
205 |
Våler Church : A Contemporary Experience of Sacred Architecture / Våler kyrka : en samtida upplevelse av sakrala arkitekturMoattar, Kayrokh January 2012 (has links)
The History of Architecture has been all about religious buildings. With distribution of sources of power and wealth, new paradigms have emerged. Architecture today is about villas, skyscrapers, stadiums, etc. as well as churches. The financial support of the church is not in the same way as in middle ages; neither the way in which they are used. The question of this thesis project is this transformation of an architectural tradition and how it should be adjusted to our time’s conditions.
|
Page generated in 0.1248 seconds