• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 3
  • Tagged with
  • 27
  • 25
  • 19
  • 17
  • 16
  • 16
  • 16
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wie der Computer virtuelle Muskeln formt

Neumann, Thomas, Wacker, Markus 27 May 2014 (has links) (PDF)
Mit Techniken der Computergraphik können bewegte drei-dimensionale Oberflächen mit höchsten visuellen Details generiert und dargestellt werden. Mittlerweile sind die Ergebnisse so gut, dass beispielsweise virtuelle menschliche Gesichter in Filmen und Videospielen kaum noch von realen zu unterscheiden sind. Auch in der Ergonomie werden immer genauere Mensch-Modelle und Simulationen verwendet, beispielsweise zur Validierung und Verbesserung von Textilien.
2

A Framework for example-based Synthesis of Materials for Physically Based Rendering

Rudolph, Carsten 14 February 2019 (has links)
In computer graphics, textures are used to create detail along geometric surfaces. They are less computationally expensive than geometry, but this efficiency is traded for greater memory demands, especially with large output resolutions. Research has shown, that textures can be synthesized from low-resolution exemplars, reducing overall runtime memory cost and enabling applications, like remixing existing textures to create new, visually similar representations. In many modern applications, textures are not limited to simple images, but rather represent geometric detail in different ways, that describe how lights interacts at a certain point on a surface. Physically Based Rendering (PBR) is a technique, that employs complex lighting models to create effects like self-shadowing, realistic reflections or subsurface scattering. A set of multiple textures is used to describe what is called a material. In this thesis, example-based texture synthesis is extented to physical lighting models to create a physically based material synthesizer. It introduces a framework that is capable of utilizing multiple texture maps to synthesize new representations from existing material exemplars. The framework is then tested with multiple exemplars from different texture categories, to prospect synthesis performance in terms of quality and computation time. The synthesizer works in uv space, enabling to re-use the same exemplar material at runtime with different uv maps, reducing memory cost, whilst increasing visual varienty and minimizing repetition artifacts. The thesis shows, that this can be done effectively, without introducing inconsitencies like seams or discontiuities under dynamic lighting scenarios.:1. Context and Motivation 2. Introduction 2.1. Terminology: What is a Texture? 2.1.1. Classifying Textures 2.1.2. Characteristics and Appearance 2.1.3. Advanced Analysis 2.2. Texture Representation 2.2.1. Is there a theoretical Limit for Texture Resolution? 2.3. Texture Authoring 2.3.1. Texture Generation from Photographs 2.3.2. Computer-Aided Texture Generation 2.4. Introduction to Physically Based Rendering 2.4.1. Empirical Shading and Lighting Models 2.4.2. The Bi-Directional Reflectance Distribution Function (BRDF) 2.4.3. Typical Texture Representations for Physically Based Models 3. A brief History of Texture Synthesis 3.1. Algorithm Categories and their Developments 3.1.1. Pixel-based Texture Synthesis 3.1.2. Patch-based Texture Synthesis 3.1.3. Texture Optimization 3.1.4. Neural Network Texture Synthesis 3.2. The Purpose of example-based Texture Synthesis Algorithms 4. Framework Design 4.1. Dividing Synthesis into subsequent Stages 4.2. Analysis Stage 4.2.1. Search Space 4.2.2. Guidance Channel Extraction 4.3. Synthesis Stage 4.3.1. Synthesis by Neighborhood Matching 4.3.2. Validation 5. Implementation 5.1. Modules and Components 5.2. Image Processing 5.2.1. Image Representation 5.2.2. Filters and Guidance Channel Extraction 5.2.3. Search Space and Descriptors 5.2.4. Neighborhood Search 5.3. Implementing Synthesizers 5.3.1. Unified Synthesis Interface 5.3.2. Appearance Space Synthesis: A Hierarchical, Parallel, Per-Pixel Synthesizer 5.3.3. (Near-) Regular Texture Synthesis 5.3.4. Extented Appearance Space: A Physical Material Synthesizer 5.4. Persistence 5.4.1. Codecs 5.4.2. Assets 5.5. Command Line Sandbox 5.5.1. Providing Texture Images and Material Dictionaries 6. Experiments and Results 6.1. Test Setup 6.1.1. Metrics 6.1.2. Result Visualization 6.1.3. Limitations and Conventions 6.2. Experiment 1: Analysis Stage Performance 6.2.1. Influence of Exemplar Resolution 6.2.2. Influence of Exemplar Maps 6.3. Experiment 2: Synthesis Performance 6.3.1. Influence of Exemplar Resolution 6.3.2. Influence of Exemplar Maps 6.3.3. Influence of Sample Resolution 6.4. Experiment 3: Synthesis Quality 6.4.1. Influence of Per-Level Jitter 6.4.2. Influence of Exemplar Maps and Map Weights 7. Discussion and Outlook 7.1. Contributions 7.2. Further Improvements and Research 7.2.1. Performance Improvements 7.2.2. Quality Improvements 7.2.3. Methology 7.2.4. Further Problem Fields
3

Proceedings of the 26th Bilateral Student Workshop CTU Prague and HTW Dresden - User Interfaces & Visualization

Kammer, Dietrich, Wacker, Markus, Slavík, Pavel, Míkovec, Zdeněk 19 April 2024 (has links)
This technical report publishes the proceedings of the 26th Bilateral Student Workshop CTU Prague and HTW Dresden - User Interfaces & Visualization -, which was held on the 1st and 2nd December 2023. The workshop offers a possibility for young scientists to present their current research work in the fields of computer graphics, human-computer-interaction, robotics and usability. The workshop is intended to be a platform to bring together researchers from both the Czech Technical University in Prague (CTU) and the University of Applied Sciences Dresden (HTW). The German Academic Exchange Service offers its financial support to allow student participants the bilateral exchange between Prague and Dresden.:1) Václav Pavlovec: Multi-Boundary Labeling, pp. 2–5 2) Philipp Ballin: Influence of Speed, Direction, and Intensity of Vibrotactile Animations onto Emotional Level, pp. 6–14 3) Niklas Maximilian Kothe, Leon Kolosov: Errors In Pictures, pp. 15–21 4) Jan Trávníček: Automatic Sports Equipment Rental Service, pp. 22–26 5) Jimmy Orawetz, Felix Mühlberg: Capturing and Reproducing Atmospheres, pp. 27–32 6) Vojtěch Leischner: Time Based Audio-movement Graph, pp. 33–37 7) Markéta Machová: Balancing Exercises for Seniors in VR with Interactive Elements, pp. 38–41 8) Radka Olyšarová: MediaPipe Based Leg Tracking Method for Sensorimotor Walking Exercise for Elderly in VR, pp. 42–46 9) Vojtěch Radakulan: Application of Diegetic and Non-Diegetic Navigation in Virtual Reality, pp. 47–51 / Dieser Tagungsband enthält die Beiträge des 26. Bilateralen Studentenworkshops der CTU Prag und der HTW Dresden zu User Interfaces & Visualization, der am 1. und 2. Dezember 2023 stattfand. Der Workshop bietet jungen Wissenschaftlerinnen und Wissenschaftlern die Möglichkeit, ihre aktuellen Forschungsarbeiten in den Bereichen Computergrafik, Mensch-Computer-Interaktion, Robotik und Usability zu präsentieren. Der Workshop soll eine Plattform sein, um Forschende der Tschechischen Technischen Universität Prag (CTU) und der Hochschule für Technik und Wirtschaft Dresden (HTW) zusammenzubringen. Der Deutsche Akademische Austauschdienst stellt die finanzielle Unterstützung bereit, um den studentischen Teilnehmenden den bilateralen Austausch zwischen Prag und Dresden zu ermöglichen.:1) Václav Pavlovec: Multi-Boundary Labeling, pp. 2–5 2) Philipp Ballin: Influence of Speed, Direction, and Intensity of Vibrotactile Animations onto Emotional Level, pp. 6–14 3) Niklas Maximilian Kothe, Leon Kolosov: Errors In Pictures, pp. 15–21 4) Jan Trávníček: Automatic Sports Equipment Rental Service, pp. 22–26 5) Jimmy Orawetz, Felix Mühlberg: Capturing and Reproducing Atmospheres, pp. 27–32 6) Vojtěch Leischner: Time Based Audio-movement Graph, pp. 33–37 7) Markéta Machová: Balancing Exercises for Seniors in VR with Interactive Elements, pp. 38–41 8) Radka Olyšarová: MediaPipe Based Leg Tracking Method for Sensorimotor Walking Exercise for Elderly in VR, pp. 42–46 9) Vojtěch Radakulan: Application of Diegetic and Non-Diegetic Navigation in Virtual Reality, pp. 47–51
4

Real-time visualization of 3D city models

Buchholz, Henrik January 2006 (has links)
An increasing number of applications requires user interfaces that facilitate the handling of large geodata sets. Using virtual 3D city models, complex geospatial information can be communicated visually in an intuitive way. Therefore, real-time visualization of virtual 3D city models represents a key functionality for interactive exploration, presentation, analysis, and manipulation of geospatial data. This thesis concentrates on the development and implementation of concepts and techniques for real-time city model visualization. It discusses rendering algorithms as well as complementary modeling concepts and interaction techniques. Particularly, the work introduces a new real-time rendering technique to handle city models of high complexity concerning texture size and number of textures. Such models are difficult to handle by current technology, primarily due to two problems: - Limited texture memory: The amount of simultaneously usable texture data is limited by the memory of the graphics hardware. - Limited number of textures: Using several thousand different textures simultaneously causes significant performance problems due to texture switch operations during rendering. The multiresolution texture atlases approach, introduced in this thesis, overcomes both problems. During rendering, it permanently maintains a small set of textures that are sufficient for the current view and the screen resolution available. The efficiency of multiresolution texture atlases is evaluated in performance tests. To summarize, the results demonstrate that the following goals have been achieved: - Real-time rendering becomes possible for 3D scenes whose amount of texture data exceeds the main memory capacity. - Overhead due to texture switches is kept permanently low, so that the number of different textures has no significant effect on the rendering frame rate. Furthermore, this thesis introduces two new approaches for real-time city model visualization that use textures as core visualization elements: - An approach for visualization of thematic information. - An approach for illustrative visualization of 3D city models. Both techniques demonstrate that multiresolution texture atlases provide a basic functionality for the development of new applications and systems in the domain of city model visualization. / Eine zunehmende Anzahl von Anwendungen benötigt Benutzungsschnittstellen, um den Umgang mit großen Geodatenmengen zu ermöglichen. Virtuelle 3D-Stadtmodelle bieten eine Möglichkeit, komplexe raumbezogene Informationen auf intuitive Art und Weise visuell erfassbar zu machen. Echtzeit-Visualisierung virtueller Stadtmodelle bildet daher eine Grundlage für die interaktive Exploration, Präsentation, Analyse und Bearbeitung raumbezogener Daten. Diese Arbeit befasst sich mit der Entwicklung und Implementierung von Konzepten und Techniken für die Echtzeit-Visualisierung virtueller 3D-Stadtmodelle. Diese umfassen sowohl Rendering-Algorithmen als auch dazu komplementäre Modellierungskonzepte und Interaktionstechniken. Insbesondere wird in dieser Arbeit eine neue Echtzeit-Rendering-Technik für Stadtmodelle hoher Komplexität hinsichtlich Texturgröße und Texturanzahl vorgestellt. Solche Modelle sind durch die derzeit zur Verfügung stehende Technologie schwierig zu bewältigen, vor allem aus zwei Gründen: - Begrenzter Textur-Speicher: Die Menge an gleichzeitig nutzbaren Texturdaten ist beschränkt durch den Speicher der Grafik-Hardware. - Begrenzte Textur-Anzahl: Die gleichzeitige Verwendung mehrerer tausend Texturen verursacht erhebliche Performance-Probleme aufgrund von Textur-Umschaltungs-Operationen während des Renderings. Das in dieser Arbeit vorgestellte Verfahren, das Rendering mit Multiresolutions-Texturatlanten löst beide Probleme. Während der Darstellung wird dazu permanent eine kleine Textur-Menge verwaltet, die für die aktuelle Sichtperspektive und die zur Verfügung stehende Bildschirmauflösung hinreichend ist. Die Effizienz des Verfahrens wird in Performance-Tests untersucht. Die Ergebnisse zeigen, dass die folgenden Ziele erreicht werden: - Echtzeit-Darstellung wird für Modelle möglich, deren Texturdaten-Menge die Kapazität des Hauptspeichers übersteigt. - Der Overhead durch Textur-Umschaltungs-Operationen wird permanent niedrig gehalten, so dass die Anzahl der unterschiedlichen Texturen keinen wesentlichen Einfluss auf die Bildrate der Darstellung hat. Die Arbeit stellt außerdem zwei neue Ansätze zur 3D-Stadtmodell-Visualisierung vor, in denen Texturen als zentrale Visualisierungselemente eingesetzt werden: - Ein Verfahren zur Visualisierung thematischer Informationen. - Ein Verfahren zur illustrativen Visualisierung von 3D-Stadtmodellen. Beide Ansätze zeigen, dass Rendering mit Multiresolutions-Texturatlanten eine Grundlage für die Entwicklung neuer Anwendungen und Systeme im Bereich der 3D-Stadtmodell-Visualisierung bietet.
5

Applied Visualization in the Neurosciences and the Enhancement of Visualization through Computer Graphics

Eichelbaum, Sebastian 10 December 2014 (has links) (PDF)
The complexity and size of measured and simulated data in many fields of science is increasing constantly. The technical evolution allows for capturing smaller features and more complex structures in the data. To make this data accessible by the scientists, efficient and specialized visualization techniques are required. Maximum efficiency and value for the user can only be achieved by adapting visualization to the specific application area and the specific requirements of the scientific field. Part I: In the first part of my work, I address the visualization in the neurosciences. The neuroscience tries to understand the human brain; beginning at its smallest parts, up to its global infrastructure. To achieve this ambitious goal, the neuroscience uses a combination of three-dimensional data from a myriad of sources, like MRI, CT, or functional MRI. To handle this diversity of different data types and sources, the neuroscience need specialized and well evaluated visualization techniques. As a start, I will introduce an extensive software called \"OpenWalnut\". It forms the common base for developing and using visualization techniques with our neuroscientific collaborators. Using OpenWalnut, standard and novel visualization approaches are available to the neuroscientific researchers too. Afterwards, I am introducing a very specialized method to illustrate the causal relation of brain areas, which was, prior to that, only representable via abstract graph models. I will finalize the first part of my work with an evaluation of several standard visualization techniques in the context of simulated electrical fields in the brain. The goal of this evaluation was clarify the advantages and disadvantages of the used visualization techniques to the neuroscientific community. We exemplified these, using clinically relevant scenarios. Part II: Besides the data preprocessing, which plays a tremendous role in visualization, the final graphical representation of the data is essential to understand structure and features in the data. The graphical representation of data can be seen as the interface between the data and the human mind. The second part of my work is focused on the improvement of structural and spatial perception of visualization -- the improvement of the interface. Unfortunately, visual improvements using computer graphics methods of the computer game industry is often seen sceptically. In the second part, I will show that such methods can be applied to existing visualization techniques to improve spatiality and to emphasize structural details in the data. I will use a computer graphics paradigm called \"screen space rendering\". Its advantage, amongst others, is its seamless applicability to nearly every visualization technique. I will start with two methods that improve the perception of mesh-like structures on arbitrary surfaces. Those mesh structures represent second-order tensors and are generated by a method named \"TensorMesh\". Afterwards I show a novel approach to optimally shade line and point data renderings. With this technique it is possible for the first time to emphasize local details and global, spatial relations in dense line and point data. / In vielen Bereichen der Wissenschaft nimmt die Größe und Komplexität von gemessenen und simulierten Daten zu. Die technische Entwicklung erlaubt das Erfassen immer kleinerer Strukturen und komplexerer Sachverhalte. Um solche Daten dem Menschen zugänglich zu machen, benötigt man effiziente und spezialisierte Visualisierungswerkzeuge. Nur die Anpassung der Visualisierung auf ein Anwendungsgebiet und dessen Anforderungen erlaubt maximale Effizienz und Nutzen für den Anwender. Teil I: Im ersten Teil meiner Arbeit befasse ich mich mit der Visualisierung im Bereich der Neurowissenschaften. Ihr Ziel ist es, das menschliche Gehirn zu begreifen; von seinen kleinsten Teilen bis hin zu seiner Gesamtstruktur. Um dieses ehrgeizige Ziel zu erreichen nutzt die Neurowissenschaft vor allem kombinierte, dreidimensionale Daten aus vielzähligen Quellen, wie MRT, CT oder funktionalem MRT. Um mit dieser Vielfalt umgehen zu können, benötigt man in der Neurowissenschaft vor allem spezialisierte und evaluierte Visualisierungsmethoden. Zunächst stelle ich ein umfangreiches Softwareprojekt namens \"OpenWalnut\" vor. Es bildet die gemeinsame Basis für die Entwicklung und Nutzung von Visualisierungstechniken mit unseren neurowissenschaftlichen Kollaborationspartnern. Auf dieser Basis sind klassische und neu entwickelte Visualisierungen auch für Neurowissenschaftler zugänglich. Anschließend stelle ich ein spezialisiertes Visualisierungsverfahren vor, welches es ermöglicht, den kausalen Zusammenhang zwischen Gehirnarealen zu illustrieren. Das war vorher nur durch abstrakte Graphenmodelle möglich. Den ersten Teil der Arbeit schließe ich mit einer Evaluation verschiedener Standardmethoden unter dem Blickwinkel simulierter elektrischer Felder im Gehirn ab. Das Ziel dieser Evaluation war es, der neurowissenschaftlichen Gemeinde die Vor- und Nachteile bestimmter Techniken zu verdeutlichen und anhand klinisch relevanter Fälle zu erläutern. Teil II: Neben der eigentlichen Datenvorverarbeitung, welche in der Visualisierung eine enorme Rolle spielt, ist die grafische Darstellung essenziell für das Verständnis der Strukturen und Bestandteile in den Daten. Die grafische Repräsentation von Daten bildet die Schnittstelle zum Gehirn des Menschen. Der zweite Teile meiner Arbeit befasst sich mit der Verbesserung der strukturellen und räumlichen Wahrnehmung in Visualisierungsverfahren -- mit der Verbesserung der Schnittstelle. Leider werden viele visuelle Verbesserungen durch Computergrafikmethoden der Spieleindustrie mit Argwohn beäugt. Im zweiten Teil meiner Arbeit werde ich zeigen, dass solche Methoden in der Visualisierung angewendet werden können um den räumlichen Eindruck zu verbessern und Strukturen in den Daten hervorzuheben. Dazu nutze ich ein in der Computergrafik bekanntes Paradigma: das \"Screen Space Rendering\". Dieses Paradigma hat den Vorteil, dass es auf nahezu jede existierende Visualiserungsmethode als Nachbearbeitunsgschritt angewendet werden kann. Zunächst führe ich zwei Methoden ein, die die Wahrnehmung von gitterartigen Strukturen auf beliebigen Oberflächen verbessern. Diese Gitter repräsentieren die Struktur von Tensoren zweiter Ordnung und wurden durch eine Methode namens \"TensorMesh\" erzeugt. Anschließend zeige ich eine neuartige Technik für die optimale Schattierung von Linien und Punktdaten. Mit dieser Technik ist es erstmals möglich sowohl lokale Details als auch globale räumliche Zusammenhänge in dichten Linien- und Punktdaten zu erfassen.
6

Applied Visualization in the Neurosciences and the Enhancement of Visualization through Computer Graphics

Eichelbaum, Sebastian 27 November 2014 (has links)
The complexity and size of measured and simulated data in many fields of science is increasing constantly. The technical evolution allows for capturing smaller features and more complex structures in the data. To make this data accessible by the scientists, efficient and specialized visualization techniques are required. Maximum efficiency and value for the user can only be achieved by adapting visualization to the specific application area and the specific requirements of the scientific field. Part I: In the first part of my work, I address the visualization in the neurosciences. The neuroscience tries to understand the human brain; beginning at its smallest parts, up to its global infrastructure. To achieve this ambitious goal, the neuroscience uses a combination of three-dimensional data from a myriad of sources, like MRI, CT, or functional MRI. To handle this diversity of different data types and sources, the neuroscience need specialized and well evaluated visualization techniques. As a start, I will introduce an extensive software called \"OpenWalnut\". It forms the common base for developing and using visualization techniques with our neuroscientific collaborators. Using OpenWalnut, standard and novel visualization approaches are available to the neuroscientific researchers too. Afterwards, I am introducing a very specialized method to illustrate the causal relation of brain areas, which was, prior to that, only representable via abstract graph models. I will finalize the first part of my work with an evaluation of several standard visualization techniques in the context of simulated electrical fields in the brain. The goal of this evaluation was clarify the advantages and disadvantages of the used visualization techniques to the neuroscientific community. We exemplified these, using clinically relevant scenarios. Part II: Besides the data preprocessing, which plays a tremendous role in visualization, the final graphical representation of the data is essential to understand structure and features in the data. The graphical representation of data can be seen as the interface between the data and the human mind. The second part of my work is focused on the improvement of structural and spatial perception of visualization -- the improvement of the interface. Unfortunately, visual improvements using computer graphics methods of the computer game industry is often seen sceptically. In the second part, I will show that such methods can be applied to existing visualization techniques to improve spatiality and to emphasize structural details in the data. I will use a computer graphics paradigm called \"screen space rendering\". Its advantage, amongst others, is its seamless applicability to nearly every visualization technique. I will start with two methods that improve the perception of mesh-like structures on arbitrary surfaces. Those mesh structures represent second-order tensors and are generated by a method named \"TensorMesh\". Afterwards I show a novel approach to optimally shade line and point data renderings. With this technique it is possible for the first time to emphasize local details and global, spatial relations in dense line and point data. / In vielen Bereichen der Wissenschaft nimmt die Größe und Komplexität von gemessenen und simulierten Daten zu. Die technische Entwicklung erlaubt das Erfassen immer kleinerer Strukturen und komplexerer Sachverhalte. Um solche Daten dem Menschen zugänglich zu machen, benötigt man effiziente und spezialisierte Visualisierungswerkzeuge. Nur die Anpassung der Visualisierung auf ein Anwendungsgebiet und dessen Anforderungen erlaubt maximale Effizienz und Nutzen für den Anwender. Teil I: Im ersten Teil meiner Arbeit befasse ich mich mit der Visualisierung im Bereich der Neurowissenschaften. Ihr Ziel ist es, das menschliche Gehirn zu begreifen; von seinen kleinsten Teilen bis hin zu seiner Gesamtstruktur. Um dieses ehrgeizige Ziel zu erreichen nutzt die Neurowissenschaft vor allem kombinierte, dreidimensionale Daten aus vielzähligen Quellen, wie MRT, CT oder funktionalem MRT. Um mit dieser Vielfalt umgehen zu können, benötigt man in der Neurowissenschaft vor allem spezialisierte und evaluierte Visualisierungsmethoden. Zunächst stelle ich ein umfangreiches Softwareprojekt namens \"OpenWalnut\" vor. Es bildet die gemeinsame Basis für die Entwicklung und Nutzung von Visualisierungstechniken mit unseren neurowissenschaftlichen Kollaborationspartnern. Auf dieser Basis sind klassische und neu entwickelte Visualisierungen auch für Neurowissenschaftler zugänglich. Anschließend stelle ich ein spezialisiertes Visualisierungsverfahren vor, welches es ermöglicht, den kausalen Zusammenhang zwischen Gehirnarealen zu illustrieren. Das war vorher nur durch abstrakte Graphenmodelle möglich. Den ersten Teil der Arbeit schließe ich mit einer Evaluation verschiedener Standardmethoden unter dem Blickwinkel simulierter elektrischer Felder im Gehirn ab. Das Ziel dieser Evaluation war es, der neurowissenschaftlichen Gemeinde die Vor- und Nachteile bestimmter Techniken zu verdeutlichen und anhand klinisch relevanter Fälle zu erläutern. Teil II: Neben der eigentlichen Datenvorverarbeitung, welche in der Visualisierung eine enorme Rolle spielt, ist die grafische Darstellung essenziell für das Verständnis der Strukturen und Bestandteile in den Daten. Die grafische Repräsentation von Daten bildet die Schnittstelle zum Gehirn des Menschen. Der zweite Teile meiner Arbeit befasst sich mit der Verbesserung der strukturellen und räumlichen Wahrnehmung in Visualisierungsverfahren -- mit der Verbesserung der Schnittstelle. Leider werden viele visuelle Verbesserungen durch Computergrafikmethoden der Spieleindustrie mit Argwohn beäugt. Im zweiten Teil meiner Arbeit werde ich zeigen, dass solche Methoden in der Visualisierung angewendet werden können um den räumlichen Eindruck zu verbessern und Strukturen in den Daten hervorzuheben. Dazu nutze ich ein in der Computergrafik bekanntes Paradigma: das \"Screen Space Rendering\". Dieses Paradigma hat den Vorteil, dass es auf nahezu jede existierende Visualiserungsmethode als Nachbearbeitunsgschritt angewendet werden kann. Zunächst führe ich zwei Methoden ein, die die Wahrnehmung von gitterartigen Strukturen auf beliebigen Oberflächen verbessern. Diese Gitter repräsentieren die Struktur von Tensoren zweiter Ordnung und wurden durch eine Methode namens \"TensorMesh\" erzeugt. Anschließend zeige ich eine neuartige Technik für die optimale Schattierung von Linien und Punktdaten. Mit dieser Technik ist es erstmals möglich sowohl lokale Details als auch globale räumliche Zusammenhänge in dichten Linien- und Punktdaten zu erfassen.
7

Wie der Computer virtuelle Muskeln formt: Datengetriebene Animation dynamischer 3D-Oberflächen

Neumann, Thomas, Wacker, Markus 27 May 2014 (has links)
Mit Techniken der Computergraphik können bewegte drei-dimensionale Oberflächen mit höchsten visuellen Details generiert und dargestellt werden. Mittlerweile sind die Ergebnisse so gut, dass beispielsweise virtuelle menschliche Gesichter in Filmen und Videospielen kaum noch von realen zu unterscheiden sind. Auch in der Ergonomie werden immer genauere Mensch-Modelle und Simulationen verwendet, beispielsweise zur Validierung und Verbesserung von Textilien.
8

Proceedings of the 21th Bilateral Student Workshop CTU Prague

28 May 2018 (has links) (PDF)
This technical report publishes the proceedings of the 21th Prague Workshop, which was held from 25th to 26th December 2017. The workshop offers a possibility for young scientists to present their current research work in the fields of computer graphics, human-computer-interaction, robotics and usability. The works is meant as a platform to bring together researchers from both the Czech Technical University in Prague (CTU) and the University of Applied Sciences Dresden (HTW). The German Academic Exchange Service offers its financial support to allow student participants the bilateral exchange between Prague and Dresden.
9

Proceedings of the 19th Bilateral Student Workshop CTU Prague

21 July 2017 (has links) (PDF)
This technical report publishes the proceedings of the 19th Prague Workshop, which was held from 27th to 28. November 2015. The workshop offers a possibility for young scientists to present their current research work in the fields of computer graphics, human-computer-interaction, robotics and usability. The works is meant as a platform to bring together researchers from both the Czech Technical University in Prague (CTU) and the University of Applied Sciences Dresden (HTW). The German Academic Exchange Service offers its financial support to allow student participants the bilateral exchange between Prague and Dresden.
10

Proceedings of the 20th Bilateral Student Workshop CTU Prague

21 July 2017 (has links) (PDF)
This technical report publishes the proceedings of the 20th Prague Workshop, which was held from 25th to 26th November 2016 The workshop offers a possibility for young scientists to present their current research work in the fields of computer graphics, human-computer-interaction, robotics and usability. The works is meant as a platform to bring together researchers from both the Czech Technical University in Prague (CTU) and the University of Applied Sciences Dresden (HTW). The German Academic Exchange Service offers its financial support to allow student participants the bilateral exchange between Prague and Dresden.

Page generated in 0.2729 seconds