• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of On/Off servers with Dynamic Voltage Scaling

Mo, Guang 11 1900 (has links)
With rapid adoption of cloud solutions across industries, energy consumed by server farms continues to rise. There are numerous approaches to reduce energy consumption in data centres, and one of the approaches is to use energy-aware policies, which focus on how servers should be operated in order to achieve energy saving and meet service level agreements (SLA). In this thesis, we focus on studying a single server model with dynamic voltage scaling (DVS), presenting a framework with explicit solutions to solve for performance metrics and energy consumption. Our framework is convenient and in- tuitive, one can easily identify expected response time and expected energy consumption for a given policy. In addition, we also provide insights on how the value of the faster service rate and the choice of when to use speed scaling impact energy consumption and performance metrics. / Thesis / Master of Computer Science (MCS)
2

Identification of Availability and Performance Bottlenecks in Cloud Computing Systems: an approach based on hierarchical models and sensitivity analysis.

MATOS JÚNIOR, Rubens de Souza 01 March 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-05-04T17:58:30Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese_rubens_digital_biblioteca_08092016.pdf: 4506490 bytes, checksum: 251226257a6b659a6ae047e659147a8a (MD5) / Made available in DSpace on 2017-05-04T17:58:30Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese_rubens_digital_biblioteca_08092016.pdf: 4506490 bytes, checksum: 251226257a6b659a6ae047e659147a8a (MD5) Previous issue date: 2016-03-01 / CAPES / Cloud computing paradigm is able to reduce costs of acquisition and maintenance of computer systems, and enables the balanced management of resources according to the demand. Hierarchical and composite analytical models are suitable for describing performance and dependability of cloud computing systems in a concise manner, dealing with the huge number of components which constitute such kind of system. That approach uses distinct sub-models for each system level and the measures obtained in each sub-model are integrated to compute the measures for the whole system. Identification of bottlenecks in hierarchical models might be difficult yet, due to the large number of parameters and their distribution among distinct modeling levels and formalisms. This thesis proposes methods for evaluation and detection of bottlenecks of cloud computing systems. The methodology is based on hierarchical modeling and parametric sensitivity analysis techniques tailored for such a scenario. This research introduces methods to build unified sensitivity rankings when distinct modeling formalisms are combined. These methods are embedded in the Mercury software tool, providing an automated sensitivity analysis framework for supporting the process. Distinct case studies helped in testing the methodology, encompassing hardware and software aspects of cloud systems, from basic infrastructure level to applications that are hosted in private clouds. The case studies showed that the proposed approach is helpful for guiding cloud systems designers and administrators in the decision-making process, especially for tune-up and architectural improvements. It is possible to employ the methodology through an optimization algorithm proposed here, called Sensitive GRASP. This algorithm aims at optimizing performance and dependability of computing systems that cannot stand the exploration of all architectural and configuration possibilities to find the best quality of service. This is especially useful for cloud-hosted services and their complex underlying infrastructures. / O paradigma de computação em nuvem é capaz de reduzir os custos de aquisição e manutenção de sistemas computacionais e permitir uma gestão equilibrada dos recursos de acordo com a demanda. Modelos analíticos hierárquicos e compostos são adequados para descrever de forma concisa o desempenho e a confiabilidade de sistemas de computação em nuvem, lidando com o grande número de componentes que constituem esse tipo de sistema. Esta abordagem usa sub-modelos distintos para cada nível do sistema e as medidas obtidas em cada sub-modelo são usadas para calcular as métricas desejadas para o sistema como um todo. A identificação de gargalos em modelos hierárquicos pode ser difícil, no entanto, devido ao grande número de parâmetros e sua distribuição entre os distintos formalismos e níveis de modelagem. Esta tese propõe métodos para a avaliação e detecção de gargalos de sistemas de computação em nuvem. A abordagem baseia-se na modelagem hierárquica e técnicas de análise de sensibilidade paramétrica adaptadas para tal cenário. Esta pesquisa apresenta métodos para construir rankings unificados de sensibilidade quando formalismos de modelagem distintos são combinados. Estes métodos são incorporados no software Mercury, fornecendo uma estrutura automatizada de apoio ao processo. Uma metodologia de suporte a essa abordagem foi proposta e testada ao longo de estudos de casos distintos, abrangendo aspectos de hardware e software de sistemas IaaS (Infraestrutura como um serviço), desde o nível de infraestrutura básica até os aplicativos hospedados em nuvens privadas. Os estudos de caso mostraram que a abordagem proposta é útil para orientar os projetistas e administradores de infraestruturas de nuvem no processo de tomada de decisões, especialmente para ajustes eventuais e melhorias arquiteturais. A metodologia também pode ser aplicada por meio de um algoritmo de otimização proposto aqui, chamado Sensitive GRASP. Este algoritmo tem o objetivo de otimizar o desempenho e a confiabilidade de sistemas em cenários onde não é possível explorar todas as possibilidades arquiteturais e de configuração para encontrar a melhor qualidade de serviço. Isto é especialmente útil para os serviços hospedados na nuvem e suas complexas
3

Investigation of Immersion Cooled ARM-Based Computer Clusters for Low-Cost, High-Performance Computing

Mohammed, Awaizulla Shareef 08 1900 (has links)
This study aimed to investigate performance of ARM-based computer clusters using two-phase immersion cooling approach, and demonstrate its potential benefits over the air-based natural and forced convection approaches. ARM-based clusters were created using Raspberry Pi model 2 and 3, a commodity-level, single-board computer. Immersion cooling mode utilized two types of dielectric liquids, HFE-7000 and HFE-7100. Experiments involved running benchmarking tests Sysbench high performance linpack (HPL), and the combination of both in order to quantify the key parameters of device junction temperature, frequency, execution time, computing performance, and energy consumption. Results indicated that the device core temperature has direct effects on the computing performance and energy consumption. In the reference, natural convection cooling mode, as the temperature raised, the cluster started to decease its operating frequency to save the internal cores from damage. This resulted in decline of computing performance and increase of execution time, further leading to increase of energy consumption. In more extreme cases, performance of the cluster dropped by 4X, while the energy consumption increased by 220%. This study therefore demonstrated that two-phase immersion cooling method with its near-isothermal, high heat transfer capability would enable fast, energy efficient, and reliable operation, particularly benefiting high performance computing applications where conventional air-based cooling methods would fail.
4

Advanced Memory Data Structures for Scalable Event Trace Analysis

Knüpfer, Andreas 16 December 2008 (has links)
The thesis presents a contribution to the analysis and visualization of computational performance based on event traces with a particular focus on parallel programs and High Performance Computing (HPC). Event traces contain detailed information about specified incidents (events) during run-time of programs and allow minute investigation of dynamic program behavior, various performance metrics, and possible causes of performance flaws. Due to long running and highly parallel programs and very fine detail resolutions, event traces can accumulate huge amounts of data which become a challenge for interactive as well as automatic analysis and visualization tools. The thesis proposes a method of exploiting redundancy in the event traces in order to reduce the memory requirements and the computational complexity of event trace analysis. The sources of redundancy are repeated segments of the original program, either through iterative or recursive algorithms or through SPMD-style parallel programs, which produce equal or similar repeated event sequences. The data reduction technique is based on the novel Complete Call Graph (CCG) data structure which allows domain specific data compression for event traces in a combination of lossless and lossy methods. All deviations due to lossy data compression can be controlled by constant bounds. The compression of the CCG data structure is incorporated in the construction process, such that at no point substantial uncompressed parts have to be stored. Experiments with real-world example traces reveal the potential for very high data compression. The results range from factors of 3 to 15 for small scale compression with minimum deviation of the data to factors > 100 for large scale compression with moderate deviation. Based on the CCG data structure, new algorithms for the most common evaluation and analysis methods for event traces are presented, which require no explicit decompression. By avoiding repeated evaluation of formerly redundant event sequences, the computational effort of the new algorithms can be reduced in the same extent as memory consumption. The thesis includes a comprehensive discussion of the state-of-the-art and related work, a detailed presentation of the design of the CCG data structure, an elaborate description of algorithms for construction, compression, and analysis of CCGs, and an extensive experimental validation of all components. / Diese Dissertation stellt einen neuartigen Ansatz für die Analyse und Visualisierung der Berechnungs-Performance vor, der auf dem Ereignis-Tracing basiert und insbesondere auf parallele Programme und das Hochleistungsrechnen (High Performance Computing, HPC) zugeschnitten ist. Ereignis-Traces (Ereignis-Spuren) enthalten detaillierte Informationen über spezifizierte Ereignisse während der Laufzeit eines Programms und erlauben eine sehr genaue Untersuchung des dynamischen Verhaltens, verschiedener Performance-Metriken und potentieller Performance-Probleme. Aufgrund lang laufender und hoch paralleler Anwendungen und dem hohen Detailgrad kann das Ereignis-Tracing sehr große Datenmengen produzieren. Diese stellen ihrerseits eine Herausforderung für interaktive und automatische Analyse- und Visualisierungswerkzeuge dar. Die vorliegende Arbeit präsentiert eine Methode, die Redundanzen in den Ereignis-Traces ausnutzt, um sowohl die Speicheranforderungen als auch die Laufzeitkomplexität der Trace-Analyse zu reduzieren. Die Ursachen für Redundanzen sind wiederholt ausgeführte Programmabschnitte, entweder durch iterative oder rekursive Algorithmen oder durch SPMD-Parallelisierung, die gleiche oder ähnliche Ereignis-Sequenzen erzeugen. Die Datenreduktion basiert auf der neuartigen Datenstruktur der "Vollständigen Aufruf-Graphen" (Complete Call Graph, CCG) und erlaubt eine Kombination von verlustfreier und verlustbehafteter Datenkompression. Dabei können konstante Grenzen für alle Abweichungen durch verlustbehaftete Kompression vorgegeben werden. Die Datenkompression ist in den Aufbau der Datenstruktur integriert, so dass keine umfangreichen unkomprimierten Teile vor der Kompression im Hauptspeicher gehalten werden müssen. Das enorme Kompressionsvermögen des neuen Ansatzes wird anhand einer Reihe von Beispielen aus realen Anwendungsszenarien nachgewiesen. Die dabei erzielten Resultate reichen von Kompressionsfaktoren von 3 bis 5 mit nur minimalen Abweichungen aufgrund der verlustbehafteten Kompression bis zu Faktoren > 100 für hochgradige Kompression. Basierend auf der CCG_Datenstruktur werden außerdem neue Auswertungs- und Analyseverfahren für Ereignis-Traces vorgestellt, die ohne explizite Dekompression auskommen. Damit kann die Laufzeitkomplexität der Analyse im selben Maß gesenkt werden wie der Hauptspeicherbedarf, indem komprimierte Ereignis-Sequenzen nicht mehrmals analysiert werden. Die vorliegende Dissertation enthält eine ausführliche Vorstellung des Stands der Technik und verwandter Arbeiten in diesem Bereich, eine detaillierte Herleitung der neu eingeführten Daten-strukturen, der Konstruktions-, Kompressions- und Analysealgorithmen sowie eine umfangreiche experimentelle Auswertung und Validierung aller Bestandteile.
5

Ein Framework zur Optimierung der Energieeffizienz von HPC-Anwendungen auf der Basis von Machine-Learning-Methoden

Gocht-Zech, Andreas 03 November 2022 (has links)
Ein üblicher Ansatzpunkt zur Verbesserung der Energieeffizienz im High Performance Computing (HPC) ist, neben Verbesserungen an der Hardware oder einer effizienteren Nachnutzung der Wärme des Systems, die Optimierung der ausgeführten Programme. Dazu können zum Beispiel energieoptimale Einstellungen, wie die Frequenzen des Prozessors, für verschiedene Programmfunktionen bestimmt werden, um diese dann im späteren Verlauf des Programmes anwenden zu können. Mit jeder Änderung des Programmes kann sich dessen optimale Einstellung ändern, weshalb diese zeitaufwendig neu bestimmt werden muss. Das stellt eine wesentliche Hürde für die Anwendung solcher Verfahren dar. Dieser Prozess des Bestimmens der optimalen Frequenzen kann mithilfe von Machine-Learning-Methoden vereinfacht werden, wie in dieser Arbeit gezeigt wird. So lässt sich mithilfe von sogenannten Performance-Events ein neuronales Netz erstellen, mit dem während der Ausführung des Programmes die optimalen Frequenzen automatisch geschätzt werden können. Performance-Events sind prozessorintern und können Einblick in die Abläufe im Prozessor gewähren. Bei dem Einsatz von Performance-Events gilt es einige Fallstricke zu vermeiden. So werden die Performance-Events von Performance-Countern gezählt. Die Anzahl der Counter ist allerdings begrenzt, womit auch die Anzahl der Events, die gleichzeitig gezählt werden können, limitiert ist. Eine für diese Arbeit wesentliche Fragestellung ist also: Welche dieser Events sind relevant und müssen gezählt werden? Bei der Beantwortung dieser Frage sind Merkmalsauswahlverfahren hilfreich, besonders sogenannte Filtermethoden, bei denen die Merkmale vor dem Training ausgewählt werden. Viele bekannte Methoden gehen dabei entweder davon aus, dass die Zusammenhänge zwischen den Merkmalen linear sind, wie z. B. bei Verfahren, die den Pearson-Korrelationskoeffizienten verwenden, oder die Daten müssen in Klassen eingeteilt werden, wie etwa bei Verfahren, die auf der Transinformation beruhen. Beides ist für Performance-Events nicht ideal. Auf der einen Seite können keine linearen Zusammenhänge angenommen werden. Auf der anderen Seite bedeutet das Einteilen in Klassen einen Verlust an Information. Um diese Probleme zu adressieren, werden in dieser Arbeit bestehende Merkmalsauswahlverfahren mit den dazugehörigen Algorithmen analysiert, neue Verfahren entworfen und miteinander verglichen. Es zeigt sich, dass mit neuen Verfahren, die auf sogenannten Copulas basieren, auch nichtlineare Zusammenhänge erkannt werden können, ohne dass die Daten in Klassen eingeteilt werden müssen. So lassen sich schließlich einige Events identifiziert, die zusammen mit neuronalen Netzen genutzt werden können, um die Energieeffizienz von HPC-Anwendung zu steigern. Das in dieser Arbeit erstellte Framework erfüllt dabei neben der Auswahl der Performance-Events weitere Aufgaben: Es stellt sicher, dass diverse Programmteile mit verschiedenen optimalen Einstellungen voneinander unterschieden werden können. Darüber hinaus sorgt das Framework dafür, dass genügend Daten erzeugt werden, um ein neuronales Netz zu trainieren, und dass dieses Netz später einfach genutzt werden kann. Dabei ist das Framework so flexibel, dass auch andere Machine-Learning-Methoden getestet werden können. Die Leistungsfähigkeit des Frameworks wird abschließend in einer Ende-zu-Ende-Evaluierung an einem beispielhaften Programm demonstriert. Die Evaluierung il­lus­t­riert, dass bei nur 7% längerer Laufzeit eine Energieeinsparung von 24% erzielt werden kann und zeigt damit, dass mit Machine-Learning-Methoden wesentliche Energieeinsparungen erreicht werden können.:1 Einleitung und Motiovation 2 Energieeffizienz und Machine-Learning – eine thematische Einführung 2.1 Energieeffizienz von Programmen im Hochleistungsrechnen 2.1.1 Techniken zur Energiemessung oder -abschätzung 2.1.2 Techniken zur Beeinflussung der Energieeffizienz in der Hardware 2.1.3 Grundlagen zur Performanceanalyse 2.1.4 Regionsbasierte Ansätze zur Erhöhung der Energieeffizienz 2.1.5 Andere Ansätze zur Erhöhung der Energieeffizienz 2.2 Methoden zur Merkmalsauswahl 2.2.1 Merkmalsauswahlmethoden basierend auf der Informationstheorie 2.2.2 Merkmalsauswahl für stetige Merkmale 2.2.3 Andere Verfahren zur Merkmalsauswahl 2.3 Machine-Learning mit neuronalen Netzen 2.3.1 Neuronale Netze 2.3.2 Backpropagation 2.3.3 Aktivierungsfunktionen 3 Merkmalsauswahl für mehrdimensionale nichtlineare Abhängigkeiten 3.1 Analyse der Problemstellung, Merkmale und Zielgröße 3.2 Merkmalsauswahl mit mehrdimensionaler Transinformation für stetige Merkmale 3.2.1 Mehrdimensionale Copula-Entropie und mehrdimensionale Transinformation 3.2.2 Schätzung der mehrdimensionalen Transinformation basierend auf Copula-Dichte 3.3 Normierung 3.4 Vergleich von Copula-basierten Maßzahlen mit der klassischen Transinformation und dem Pearson-Korrelationskoeffizienten 3.4.1 Deterministische Abhängigkeit zweier Variablen 3.4.2 UnabhängigkeitVergleich verschiedener Methoden zur Auswahl stetiger Merkmale 3.5 Vergleich verschiedener Methoden zur Auswahl stetiger Merkmale 3.5.1 Erzeugung synthetischer Daten 3.5.2 Szenario 1 – fünf relevante Merkmale 3.5.3 Szenario 2 – fünf relevante Merkmale, fünf wiederholte Merkmale 3.5.4 Schlussfolgerungen aus den Simulationen 3.6 Zusammenfassung 4 Entwicklung und Umsetzung des Frameworks 4.1 Erweiterungen der READEX Runtime Library 4.1.1 Grundlegender Aufbau der READEX Runtime Library 4.1.2 Call-Path oder Call-Tree 4.1.3 Calibration-Module 4.2 Testsystem 4.2.1 Architektur 4.2.2 Bestimmung des Offsets zur Energiemessung mit RAPL 4.3 Verwendete Benchmarks zur Erzeugung der Datengrundlage 4.3.1 Datensatz 1: Der Stream-Benchmark 4.3.2 Datensatz 2: Eine Sammlung verschiedener Benchmarks 4.4 Merkmalsauswahl und Modellgenerierung 4.4.1 Datenaufbereitung 4.4.2 Merkmalsauswahl Algorithmus 4.4.3 Performance-Events anderer Arbeiten zum Vergleich 4.4.4 Erzeugen und Validieren eines Modells mithilfe von TensorFlow und Keras 4.5 Zusammenfassung 5 Evaluierung des Ansatzes 5.1 Der Stream-Benchmark 5.1.1 Analyse der gewählten Merkmale 5.1.2 Ergebnisse des Trainings 5.2 Verschiedene Benchmarks 5.2.1 Ausgewählte Merkmale 5.2.2 Ergebnisse des Trainings 5.3 Energieoptimierung einer Anwendung 6 Zusammenfassung und Ausblick Literatur Abbildungsverzeichnis Tabellenverzeichnis Quelltextverzeichnis / There are a variety of different approaches to improve energy efficiency in High Performance Computing (HPC). Besides advances to the hardware or cooling systems, optimising the executed programmes' energy efficiency is another a promising approach. Determining energy-optimal settings of program functions, such as the processor frequency, can be applied during the program's execution to reduce energy consumption. However, when the program is modified, the optimal setting might change. Therefore, the energy-optimal settings need to be determined again, which is a time-consuming process and a significant impediment for applying such methods. Fortunately, finding the optimal frequencies can be simplified using machine learning methods, as shown in this thesis. With the help of so-called performance events, a neural network can be trained, which can automatically estimate the optimal processor frequencies during program execution. Performance events are processor-specific and can provide insight into the procedures of a processor. However, there are some pitfalls to be avoided when using performance events. Performance events are counted by performance counters, but as the number of counters is limited, the number of events that can be counted simultaneously is also limited. This poses the question of which of these events are relevant and need to be counted. % Though the issue has received some attention in several publications, a convincing solution remains to be found. In answering this question, feature selection methods are helpful, especially so-called filter methods, where features are selected before the training. Unfortunately, many feature selection methods either assume a linear correlation between the features, such as methods using the Pearson correlation coefficient or require data split into classes, particularly methods based on mutual information. Neither can be applied to performance events as linear correlation cannot be assumed, and splitting the data into classes would result in a loss of information. In order to address that problem, this thesis analyses existing feature selection methods together with their corresponding algorithms, designs new methods, and compares different feature selection methods. By utilising new methods based on the mathematical concept of copulas, it was possible to detect non-linear correlations without splitting the data into classes. Thus, several performance events could be identified, which can be utilised together with neural networks to increase the energy efficiency of HPC applications. In addition to selecting performance events, the created framework ensures that different programme parts, which might have different optimal settings, can be identified. Moreover, it assures that sufficient data for the training of the neural networks is generated and that the network can easily be applied. Furthermore, the framework is flexible enough to evaluate other machine learning methods. Finally, an end-to-end evaluation with a sample application demonstrated the framework's performance. The evaluation illustrates that, while extending the runtime by only 7%, energy savings of 24% can be achieved, showing that substantial energy savings can be attained using machine learning approaches.:1 Einleitung und Motiovation 2 Energieeffizienz und Machine-Learning – eine thematische Einführung 2.1 Energieeffizienz von Programmen im Hochleistungsrechnen 2.1.1 Techniken zur Energiemessung oder -abschätzung 2.1.2 Techniken zur Beeinflussung der Energieeffizienz in der Hardware 2.1.3 Grundlagen zur Performanceanalyse 2.1.4 Regionsbasierte Ansätze zur Erhöhung der Energieeffizienz 2.1.5 Andere Ansätze zur Erhöhung der Energieeffizienz 2.2 Methoden zur Merkmalsauswahl 2.2.1 Merkmalsauswahlmethoden basierend auf der Informationstheorie 2.2.2 Merkmalsauswahl für stetige Merkmale 2.2.3 Andere Verfahren zur Merkmalsauswahl 2.3 Machine-Learning mit neuronalen Netzen 2.3.1 Neuronale Netze 2.3.2 Backpropagation 2.3.3 Aktivierungsfunktionen 3 Merkmalsauswahl für mehrdimensionale nichtlineare Abhängigkeiten 3.1 Analyse der Problemstellung, Merkmale und Zielgröße 3.2 Merkmalsauswahl mit mehrdimensionaler Transinformation für stetige Merkmale 3.2.1 Mehrdimensionale Copula-Entropie und mehrdimensionale Transinformation 3.2.2 Schätzung der mehrdimensionalen Transinformation basierend auf Copula-Dichte 3.3 Normierung 3.4 Vergleich von Copula-basierten Maßzahlen mit der klassischen Transinformation und dem Pearson-Korrelationskoeffizienten 3.4.1 Deterministische Abhängigkeit zweier Variablen 3.4.2 UnabhängigkeitVergleich verschiedener Methoden zur Auswahl stetiger Merkmale 3.5 Vergleich verschiedener Methoden zur Auswahl stetiger Merkmale 3.5.1 Erzeugung synthetischer Daten 3.5.2 Szenario 1 – fünf relevante Merkmale 3.5.3 Szenario 2 – fünf relevante Merkmale, fünf wiederholte Merkmale 3.5.4 Schlussfolgerungen aus den Simulationen 3.6 Zusammenfassung 4 Entwicklung und Umsetzung des Frameworks 4.1 Erweiterungen der READEX Runtime Library 4.1.1 Grundlegender Aufbau der READEX Runtime Library 4.1.2 Call-Path oder Call-Tree 4.1.3 Calibration-Module 4.2 Testsystem 4.2.1 Architektur 4.2.2 Bestimmung des Offsets zur Energiemessung mit RAPL 4.3 Verwendete Benchmarks zur Erzeugung der Datengrundlage 4.3.1 Datensatz 1: Der Stream-Benchmark 4.3.2 Datensatz 2: Eine Sammlung verschiedener Benchmarks 4.4 Merkmalsauswahl und Modellgenerierung 4.4.1 Datenaufbereitung 4.4.2 Merkmalsauswahl Algorithmus 4.4.3 Performance-Events anderer Arbeiten zum Vergleich 4.4.4 Erzeugen und Validieren eines Modells mithilfe von TensorFlow und Keras 4.5 Zusammenfassung 5 Evaluierung des Ansatzes 5.1 Der Stream-Benchmark 5.1.1 Analyse der gewählten Merkmale 5.1.2 Ergebnisse des Trainings 5.2 Verschiedene Benchmarks 5.2.1 Ausgewählte Merkmale 5.2.2 Ergebnisse des Trainings 5.3 Energieoptimierung einer Anwendung 6 Zusammenfassung und Ausblick Literatur Abbildungsverzeichnis Tabellenverzeichnis Quelltextverzeichnis
6

Performance problem diagnosis in cloud infrastructures

Ibidunmoye, Olumuyiwa January 2016 (has links)
Cloud datacenters comprise hundreds or thousands of disparate application services, each having stringent performance and availability requirements, sharing a finite set of heterogeneous hardware and software resources. The implication of such complex environment is that the occurrence of performance problems, such as slow application response and unplanned downtimes, has become a norm rather than exception resulting in decreased revenue, damaged reputation, and huge human-effort in diagnosis. Though causes can be as varied as application issues (e.g. bugs), machine-level failures (e.g. faulty server), and operator errors (e.g. mis-configurations), recent studies have attributed capacity-related issues, such as resource shortage and contention, as the cause of most performance problems on the Internet today. As cloud datacenters become increasingly autonomous there is need for automated performance diagnosis systems that can adapt their operation to reflect the changing workload and topology in the infrastructure. In particular, such systems should be able to detect anomalous performance events, uncover manifestations of capacity bottlenecks, localize actual root-cause(s), and possibly suggest or actuate corrections. This thesis investigates approaches for diagnosing performance problems in cloud infrastructures. We present the outcome of an extensive survey of existing research contributions addressing performance diagnosis in diverse systems domains. We also present models and algorithms for detecting anomalies in real-time application performance and identification of anomalous datacenter resources based on operational metrics and spatial dependency across datacenter components. Empirical evaluations of our approaches shows how they can be used to improve end-user experience, service assurance and support root-cause analysis. / Cloud Control (C0590801)

Page generated in 0.1063 seconds