Spelling suggestions: "subject:"concrete filled"" "subject:"aconcrete filled""
51 |
Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns.El-Lobody, E., Young, B., Lam, Dennis January 2006 (has links)
This paper presents the behaviour and design of axially loaded concrete-filled steel tube circular stub columns. The study was conducted over a wide range of concrete cube strengths ranging from 30 to 110 MPa. The external diameter of the steel tube-to-plate thickness (D/t) ratio ranged from 15 to 80 covering compact steel tube sections. An accurate finite element model was developed to carry out the analysis. Accurate nonlinear material models for confined concrete and steel tubes were used. The column strengths and load¿axial shortening curves were evaluated. The results obtained from the finite element analysis were verified against experimental results. An extensive parametric study was conducted to investigate the effects of different concrete strengths and cross-section geometries on the strength and behaviour of concrete-filled compact steel tube circular stub columns. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American, Australian and European specifications. Based on the results of the parametric study, it is found that the design strengths given by the American Specifications and Australian Standards are conservative, while those of the European Code are generally unconservative. Reliability analysis was performed to evaluate the current composite column design rules.
|
52 |
Shape effect on the behaviour of axially loaded concrete filled steel tubular stub columns at elevated temperature.Dai, Xianghe, Lam, Dennis January 2012 (has links)
Concrete filled steel tubular columns have been extensively used in modern construction owing to that they utilise the most favourable properties of both constituent materials. It has been recognized that concrete filled tubular columns provide excellent structural properties such as high load bearing capacity, ductility, large energy-absorption capacity and good structural fire behaviour. This paper presents the structural fire behaviour of a series of concrete filled steel tubular stub columns with four typical column sectional shapes in standard fire. The selected concrete filled steel tube stub columns are divided into three groups by equal section strength at ambient temperature, equal steel cross sectional areas and equal concrete core cross sectional areas. The temperature distribution, critical temperature and fire exposing time etc. of selected composite columns are extracted by numerical simulations using commercial FE package ABAQUS. Based on the analysis and comparison of typical parameters, the effect of column sectional shapes on member temperature distribution and structural fire behaviour are discussed. It shows concrete steel tubular column with circular section possesses the best structural fire behaviour, followed by columns with elliptical, square and rectangular sections. Based on this research study, a simplified equation for the design of concrete filled columns at elevated temperature is proposed.
|
53 |
Computational and Experimental Study on the Behavior of Diaphragms in Steel BuildingsWei, Gengrui 03 February 2022 (has links)
The lateral force resisting system (LFRS) of a steel building consist of two parts, i.e., a vertical LFRS such as braced frames or shear walls, and a horizontal LFRS with diaphragms playing a crucial role. There are various types of floor and roof diaphragms in steel buildings, such as concrete-filled steel deck diaphragms for the floor system and bare steel deck diaphragms for the roof system of a typical steel braced frame building, and standing seam roof diaphragms for a typical metal building. Compared to vertical elements of a building's LFRS, our understanding of the horizontal elements, i.e., the diaphragms, is grossly lacking. The motivation for this work comes from the gaps identified in the research, including the lack of generally adopted acceptance criteria and modeling protocols for seismic performance-based design of bare steel deck and concrete-filled steel deck diaphragms through linear and nonlinear analysis, the need to better understand the complex behavior of concrete-filled steel deck diaphragms with irregular configurations such as reentrant corners and openings under lateral loading, the absence of appropriate Rs values for the alternative diaphragm seismic design approach in the current building code that considers diaphragm inelasticity, and the demand for understanding the in-plane behavior of a standing seam roof system and its use in lateral bracing of rafters in metal buildings.
A series of computational and experimental studies were conducted to investigate the behavior of diaphragms in buildings systems, including: 1) development of acceptance criteria and modeling protocol for performance-based seismic design of bare and concrete-filled steel deck diaphragms using a database of existing cantilever diaphragm tests; 2) a computational study on the nonlinear behavior of diaphragms with irregular configurations under lateral loading using high-fidelity finite element models validated against experiment test results; 3) investigation of the seismic behavior and performance of steel buildings with buckling restrained braced frames that considers different diaphragm design approaches and diaphragm inelasticity using nonlinear three-dimensional (3D) computational models; and 4) an experimental study that investigated the in-plane behavior of full-scale standing seam roof assemblies and their use in lateral bracing of rafters in metal building systems.
The results of these studies contribute to a better understanding of the behavior of diaphragms in steel buildings and lead to several recommendations for diaphragm design. Firstly, a series of m-factors (ductility measures) and nonlinear modeling parameters (multi-linear cyclic backbone curves) were determined for bare steel deck diaphragms and concrete-filled steel deck diaphragms. These new provisions are recommended for adoption in ASCE 41 / AISC 342, which allows the use of ductility in steel deck diaphragms for their design and retrofits. Secondly, results of the finite element analysis on concrete-filled steel deck diaphragms revealed a concentrated distribution of shear transfer through the shear connections on the collectors of the diaphragm near braced frames and a stress concentration in the composite slab near reentrant corners and openings. Thirdly, results of eigenvalue analyses with nonlinear 3D building models showed that the consideration of diaphragm flexibility led to an increase in first mode period between 13% and 48%. A comparison of results from pushover analyses and response history analyses indicated that even though the pushover analyses (based on a first mode load pattern) identified the BRBF as being weaker than the diaphragms and therefore dominating the inelastic pushover behavior, response history analyses demonstrated that the diaphragms can experience substantial inelasticity during a dynamic response. The response history results also suggest that there would be a significant difference in seismic behavior of buildings modeled as two-dimensional (2D) planar frames as compared to the 3D structures modeled herein. Furthermore, the observed final collapse mode involves an interaction between large BRBF story drifts combined with diaphragm deformations that are additive and exacerbate second order effects leading to collapse. The computed adjusted collapse margin ratios for all buildings satisfied the FEMA P695 criteria for acceptance. Therefore, it is concluded that the alternative diaphragm design procedure with the proposed Rs values (Rs = 2 for concrete-filled steel deck diaphragm and Rs = 2.5 for bare steel deck diaphragm) are reasonable for use in design of these types of structures. Lastly, the effects of different standing seam roof configurations (panel type, clip type, thermal insulation, and purlin spacing) on the in-plane stiffness and strength of the standing seam roof system were investigated through an experimental testing program, and a method was described to use these experimental results in the calculations of required bracing for metal building rafters. / Doctor of Philosophy / A diaphragm is a horizontal structural component (e.g. floors and roof) that transfers lateral forces induced by wind or earthquakes to the vertical portions (e.g. frames and walls) of the lateral force resisting system (LFRS) of the building. There are various types of floor and roof diaphragms in steel buildings, such as concrete-filled steel deck diaphragms for the floor system and bare steel deck diaphragms for the roof system of a typical steel braced frame building, and standing seam roof diaphragms for a typical metal building. Compared to vertical elements of a building's LFRS, our understanding of the horizontal elements, i.e., the diaphragms, is grossly lacking. To address the research gaps in understanding the behavior of diaphragms and utilizing them in building design, this work presents a series of computational and experimental studies. In the first study, past experimental test data were analyzed to develop acceptance criteria and modeling protocol for performance-based seismic design of steel deck diaphragms. In the second study, finite element analyses were conducted to understand the nonlinear behavior of concrete-filled steel deck diaphragms subjected to in-plane lateral loading. In the third study, nonlinear three-dimensional computational building models were developed to investigate the seismic behavior and performance of steel buildings with different diaphragm design approaches and diaphragm inelasticity. In the fourth study, experimental testing on full-scale standing seam roof assemblies was conducted to investigate their in-plane behavior and their use in lateral bracing of rafters in metal building systems. The results of these studies contribute to a better understanding of the behavior of diaphragms in steel buildings and lead to several recommendations for diaphragm design.
|
54 |
Innovative Self-Centering Connection for CCFT Composite ColumnsGao, Yu 27 January 2016 (has links)
Concrete filled steel tubes are regarded as ideal frame members in seismic resisting systems, as they combine large axial and flexural capacity with ductility. The combination of the two materials increases the strength of the confined concrete and avoids premature local buckling of the steel tube. These benefits are more prominent for circular than for rectangular concrete filled steel tubes. However, most common connection configurations for circular concrete filled tubes are not economic in the US market due to (a) the desire of designers to use only fully restrained connections and its associated (b) high cost of fabrication and field welding. Research indicates that well designed partially restrained connections can supply equal or even better cyclic behavior. Partially restrained connections also possess potential capability to develop self-centering system, which has many merits in seismic design.
The goal of this research is to develop a new connection configuration between circular concrete filled steel columns and conventional W steel beams. The new connection configuration is intended to provide another option for rapid assembling on site with low erection costs. The proposed connection is based on an extended stiffened end plate that utilizes through rods. The rods are a combination of conventional steel and shape memory alloy that provide both energy dissipation and self-centering capacity. The new connection configuration should be workable for large beam sizes and can be easily expanded to a biaxial bending moment connection. / Ph. D.
|
55 |
Axial Capacity of Circular Concrete-filled Tube ColumnsGiakoumelis, G., Lam, Dennis January 2004 (has links)
No / The behaviour of circular concrete-filled steel tubes (CFT) with various concrete strengths under axial load is presented. The effects of steel tube thickness, the bond strength between the concrete and the steel tube, and the confinement of concrete are examined. Measured column strengths are compared with the values predicted by Eurocode 4, Australian Standards and American Codes. 15 specimens were tested with 30, 60 and 100 N/mm2 concrete strength, with a D/t ratio from 22.9 to 30.5. All the columns were 114 mm in diameter and 300 mm in length. The effect due to concrete shrinkage is critical for high-strength concrete and negligible for normal strength concrete. All three codes predicted lower values than that measured during the experiments. Eurocode 4 gives the best estimation for both CFT with normal and high-strength concrete.
|
56 |
Finite element analysis and simple design calculation method for rectangular CFSTs under local bearing forcesYang, Y., Wen, Z., Dai, Xianghe 26 May 2016 (has links)
No / Rectangular concrete-filled steel tube (CFST) may be subjected to local bearing forces transmitted from brace members while being used as a chord of a truss, and thus development of finite element analysis (FEA) and simple design calculation method for rectangular CFSTs under local bearing forces are very important to ensure the safety and reliable design of such a truss with rectangular CFST chords in engineering practices. A three-dimensional FEA model was developed using ABAQUS software package to predict the performance of thin-walled rectangular CFST under local bearing forces. The preciseness of the predicted results was evaluated by comparison with experimental results reported in the available literature. The comparison and analysis show that the predicted failure pattern, load versus deformation curves and bearing capacity of rectangular CFST under local bearing forces obtained from FEA modelling were generally in good agreement with the experimental observations. After the validation, the FEA model was adopted for the mechanism analysis of typical rectangular CFSTs under local bearing forces. Finally, based on the parametric analysis, simple design equations were proposed to be used to calculate the bearing capacity of rectangular CFST under local bearing forces. / National Natural Science Foundation of China (51421064) and the Natural Science Foundation of Liaoning Province (2013020125). The financial support is gratefully acknowledged.
|
57 |
Flexural behaviour of rectangular FRP tubes fully or partially filled with reinforced concrete / Comportement en flexion de tubes en PRF rectangulaires entièrement ou partiellement remplis de béton arméSoliman, Ahmed Mohamed Abouzied January 2016 (has links)
Abstract: Recently, fiber-reinforced polymer (FRP) composite materials have been used in the field of civil engineering constructions especially in corrosive environments. They can be used as internal reinforcement for beams, slabs, and pavements, or as external reinforcement for rehabilitation and strengthening different structures. One of their innovative applications is the concrete-filled FRP tubes (CFFTs) which are becoming an alternative for different structural members such as piles, columns, bridge girders, and bridge piers due to their high performance and durability. In such integrated systems, the FRP tubes act as stay-in-place forms, protective jackets for the embedded concrete and steel, and as external reinforcement in the primary and secondary direction of the structural member. Extensive research was developed on CFFTs as columns, but comparatively limited research was carried out on CFFTs as beams especially those with rectangular sections. The circular sections exhibit magnificent confinement efficiency in case of columns. However, the rectangular sections have higher moment of inertia and flexural stiffness to resist the applied loads and deformations in case of beams. Moreover, the construction and architectural requirements prefer the rectangular section of beams, rather than the circular beams, due to its stability during installation and its workability during connecting to other structural members like slabs and columns. Also, CFFTs that are completely filled with concrete are not optimal for applications governed by pure bending, because the excess weight of the cracked concrete below the neutral axis may increase the transportation and installation cost. This dissertation presents experimental and theoretical investigations on the flexural behaviour of rectangular CFFT beams with steel rebar. These hybrid FRP-concrete-steel tubular rectangular beams contain outer rectangular filament-wound glass-FRP (GFRP) tubes to increase the sectional moment of inertia, to provide flexural and shear reinforcement, and to protect the inner structural elements (concrete and steel) against corrosion. The outer tubes were fully-or-partially filled with concrete and were reinforced with steel rebar at the tension side only. Inner hollow circular or square filament-wound GFRP tubes, shifted toward the tension zone, were provided inside the CFFT beam to eliminate the excess weight of the cracked concrete at the tension side, to confine actively the concrete at the compression side and to act as reinforcement at the tension side. The surfaces of tubes adjacent to concrete were roughened by sand coating to fulfill the full composite action of such hybrid section. Several test variables were chosen to investigate the effect of the outer and inner tubes thickness, fibers laminates, and shape on the flexural behaviour of such hybrid CFFT beams. To fulfil the objectives of the study, twenty-four full-scale beam specimens, 3200 mm long and 305×406 mm2 cross section, were tested under a four-point bending load. These specimens include eight fully-CFFT beams with wide range of tube thickness of 3.4 mm to 14.2 mm, fourteen partially-CFFT beams with different outer and inner tubes configurations, and two conventional steel-reinforced concrete (RC) beams as control specimens. The results indicate outstanding performance of the rectangular fully and partially-CFFT beams in terms of strength-to-weight ratio and ductility compared to the RC beams. The fully-CFFT beams with small tube thickness failed in tension by axial rupture of fibers at the tension side. While, the fully-CFFT beams with big tube thickness failed in compression by outward buckling of the outer tube compression flange with warning signs. The results indicate also that the flexural strength of the fully-CFFT beams was ascending nonlinearly with increasing the tubes thickness until a certain optimum limit. This limit was evaluated to define under-and-over-reinforced CFFT sections, and consequently to define the tension and compression failure of fully-CFFT beams, respectively. The inner hollow tubes act positively in reinforcing the partially-CFFT beams and confining the concrete core at the compression side. The strength-to-weight ratio of the partially-CFFT beams attained higher values than that of the corresponding fully-CFFT beams. Generally, the partially-CFFT beams failed gradually in compression due to outward buckling of the outer tube compression flange with signs of confining the concrete core at the compression side. The inner circular voids pronounced better performance than the square inner voids, however they have the same cross sectional area and fiber laminates. Theoretical section analysis based on strain compatibility/equilibrium has been developed to predict the moment-curvature response of the fully-CFFT section addressing the confinement and tension stiffening of concrete. The analytical results match well the experimental results in terms of moment, deflection, strains, and neutral axis responses. In addition, analytical investigation was conducted to examine the validity of the North American design codes provisions for predicting the deflection response of fully and partially-CFFT beams. Based on these investigations, a new power and assumptions were proposed to Branson’s equation to predict well the effective moment of inertia of the CFFT section. These assumptions consider the effect of the GFRP tube strength, thickness and configuration, in addition to the steel reinforcement ratio. The proposed equations predict well the deflection in the pre-yielding and post-yielding stages of the hybrid FRP-concrete-steel CFFT rectangular beams. / Résumé: Les matériaux composites en polymère renforcé de fibres (PRF) ont récemment été utilisés dans le domaine des constructions de génie civil, en particulier dans les environnements corrosifs. Elles peuvent être utilisées comme une armature interne pour des poutres, dalles et les trottoirs, ou comme une armature externe pour la réhabilitation et le renforcement de différentes structures. L'une de leurs applications novatrices est les tubes de polymères renforcés de fibres remplis de béton (TPFRB ) qui sont en train de devenir une alternative pour divers éléments structuraux tels que les pieux, les colonnes, les poutres et les piliers de ponts en raison de leur haute performance et durabilité. Dans de tels systèmes intégrés, les tubes PRF agissent comme un coffrage permanent, une chemise protectrice pour le béton et l'acier encastrés, et comme une armature externe dans les directions longitudinale et transversale de l'élément structural. La recherche a été concentrée sur les TPRFB comme des colonnes, mais très peu de recherche a été effectué les TPRFB comme des poutres particulièrement celles à section rectangulaire. La section circulaire présente une efficacité de confinement efficace en cas de colonnes. Toutefois, la section rectangulaire a un moment d'inertie plus élevé et une rigidité flexionnelle plus efficace pour résister les charges appliquées et les déformations dans le cas des poutres. Par ailleurs, les travaux de construction et les exigences architecturales préfèrent la section rectangulaire des poutres, plutôt que les poutres circulaires, en raison de sa stabilité pendant l'installation et sa maniabilité lors de la connexion à d'autres membres structuraux comme les dalles et les colonnes. En outre, les poutres TPRFB qui sont complètement remplis de béton ne sont pas optimales pour les applications contrôlées par la flexion pure, puisque le béton fissuré en dessous de l'axe neutre ne contribue pas à la résistance et augmente le poids propre et les coûts de transport et d'installation. Cette thèse présente des études théoriques et expérimentales sur le comportement en flexion de poutres rectangulaires (TPRFB) en béton armé. Ces poutres rectangulaires tubulaires hybrides en PRF-béton-acier sont composées de tubes rectangulaires externes fabriquées par enroulement filamentaire. Ces tubes fournissent un renforcement de flexion et de cisaillement; et protègent le béton armé contre la corrosion. Les poutres peuvent être soient entièrement ou partiellement remplies de béton. Des tubes intérieurs ( de section circulaires ou carrés) en polymères renforcés de fibres de verre (PRFV) sont positionnés dans la zone tendue de la poutre afin de réduire le poids et d’éliminer le béton fissuré en traction. Pour augmenter l'action composite de la section hybride, les surfaces des tubes adjacents au béton ont été rendues rugueuses par enrobage de sable. Plusieurs variables ont été choisis pour étudier l'effet de l’épaisseur des tubes extérieurs et intérieurs, les laminés de fibres, et la forme sur le comportement en flexion de ces poutres hybrides (TPRFB). Pour atteindre les objectifs de l’étude, vingt-quatre échantillons de poutre pleine grandeur, ayant une longueur de 3200 mm et une section transversale de 305×406 mm2, ont été testés sous une flexion à quatre points. Ces échantillons comprennent huit poutres de TPRFB entièrement remplis avec une large gamme d'épaisseur du tube externe de 3.4 mm à 14.2 mm, quatorze poutres de TPRFB partiellement remplis avec différentes configurations de tubes extérieurs et intérieurs, et deux poutres en béton armé conventionnel, comme échantillons de référence. Les résultats indiquent une performance exceptionnelle des poutres rectangulaires de TPRFB entièrement et partiellement remplies en termes du rapport de la résistance sur la masse et de la ductilité par rapport aux poutres en béton armé conventionnel. Les poutres de TPRFB entièrement remplies avec un tube de petite épaisseur ont rompu de façon moins ductile en tension par rupture axiale des fibres. Les poutres de TPRFB entièrement remplies et ayant une grande épaisseur ont rompu de façon ductile en compression par flambage local vers l’extérieur des parois en compression du tube externe. Les résultats indiquent également que la résistance à la flexion des poutres de TPRFB entièrement remplies augmente d’une façon non linéaire avec l'augmentation de l'épaisseur des tubes jusqu'à une certaine limite optimale. Cette limite a été évaluée pour définir les sections TPRFB sous-armées et surarmées et, par conséquent, pour définir la rupture en tension et en compression des poutres de TPRFB entièrement remplies, respectivement. Les tubes creux intérieurs agissent positivement dans le renforcement des poutres de TPRFB partiellement remplies et en confinant le noyau de béton du côté en compression. En général, les poutres de TPRFB partiellement remplies ont rompu en compression par flambage local vers l'extérieur des parois en compression du tube externe. Les vides circulaires intérieurs ont montré une meilleure performance que les vides carrés intérieurs, bien qu’ils aient la même superficie de la section transversale et le même taux de PRF. Une analyse théorique basée sur la compatibilité des déformations d’une section en flexion a été développée pour prédire la réponse moment-courbure de la poutre TPRFB en tenant compte des pourcentages de confinement externe et interne. Les résultats analytiques et les résultats expérimentaux s’accordent en termes de moment, flèche, déformations, et positions de l'axe neutre. En outre, une étude analytique a été menée afin d'examiner la validité des codes de conception nord-américains pour prédire la réponse en flexion des poutres TPRFB. En se basant sur les résultats de ces études, de nouvelles équations ont été proposées pour mieux prédire le moment effectif d'inertie de la section et une nouvelle procédure de conception pour prédire les capacités ultimes. Ces équations considèrent l'effet de la résistance des tubes en PRFV externe et interne que le taux d’armature en acier. En outre, ils prédisent bien la flèche dans les phases avant et après la limite élastique des poutres rectangulaires hybrides à haute performance.
|
58 |
Estudo da aderência aço-concreto em pilares mistos preenchidos / Study of bond on concrete-filled steel tubesSilva, Romulo Dinalli da 10 March 2006 (has links)
Este trabalho aborda o estudo da aderência aço-concreto em pilares mistos preenchidos através de revisão bibliográfica e de investigação experimental. De modo esquemático, a aderência é dividida em três parcelas: adesão, aderência mecânica e atrito, que em conjunto compõem a aderência natural. Adicionalmente, podem ser empregados conectores de cisalhamento, que são dispositivos mecânicos fixados nas superfícies internas dos tubos, como meio de ampliar a resistência ao escorregamento. Foram realizados ensaios do tipo pushout em alguns tipos de modelos de pilar preenchido: modelos simples, com adição de conectores tipo pino com cabeça, com cantoneiras na interface aço-concreto e semelhantes aos anteriores mais elementos de ligação. Com os resultados obtidos traçaram-se comportamentos força x escorregamento do concreto, força x deformações axiais nos materiais e curvas de distribuição de força ao longo do comprimento dos modelos. Concluiu-se que conectores tipo pino com cabeça e cantoneiras são uma excelente alternativa como dispositivos auxiliares na transferência de tensões de cisalhamento na interface aço-concreto. Entretanto, é necessário garantir resistência à ligação para que esses mecanismos sejam mobilizados / This research presents a study of influence of bond on concrete-filled steel tubes by means of a bibliography review and an experimental investigation. The bond strength counts on three mechanisms: adhesion of the concrete to the steel surface, friction and wedging of the concrete core. In order to improve the shear resistance of the steel-concrete interface, shear connectors can be used. A series of push-out tests of rectangular concrete-filled steel tubes was conducted in the specimens without mechanical shear connectors, specimens with stud bolt shear connectors and specimens with angles. They were also tested the corresponding beam-column connections. The results are shown in curves force x slip of concrete, force x axial strain of materials and distribution of axial load to the steel and to the concrete. The results of the tests permitted identify the mechanisms of natural bond and indicated that the stud bolts and the angles are excellent alternatives as auxiliary mechanisms to transfer shear between the concrete and steel in the concrete filled composite column. However, it is necessary to guarantee the connection enough strength in order to permit these resistance be developed
|
59 |
Estudo teórico-experimental de pilares mistos compostos por tubos de aço preenchidos com concreto de alta resistência. / Theoretical and experimental study of high strength concrete filled steel tubesDe Nardin, Silvana 25 March 1999 (has links)
O emprego de pilares mistos formados por tubos de aço preenchidos com concreto de alta resistência, sobretudo em edifícios altos, é uma tendência em diversos países europeus, americanos e asiáticos. A tais elementos são atribuídas vantagens como: alta resistência e ductilidade, economia de materiais e mão-de-obra, redução das dimensões da seção transversal e melhoria no comportamento dos materiais aço e concreto, devido ao efeito de confinamento. Buscando suprir algumas carências de conhecimento, procura-se obter dados experimentais sobre o comportamento de pilares mistos axialmente comprimidos, possibilitando desta forma avaliar parâmetros como influência da forma da seção transversal e da espessura do perfil tubular no seu comportamento. Foram analisadas seções quadradas, circulares e retangulares, preenchidas por concreto com resistência média de 50MPa. A ruína destes elementos caracterizou-se pelo esmagamento do concreto, ocorrendo posteriormente a flambagem local do perfil em diversos pontos. A capacidade resistente prevista por diversas normas resultou em valores muito próximos dos experimentais, embora várias destas normas não considerem o efeito de confinamento. Os ensaios mostraram que o efeito de confinamento contribui de forma decisiva na melhoria do comportamento dos materiais, sobretudo ductilizando o concreto de alta resistência, entretanto seus efeitos não são significativos no aumento da capacidade resistente da seção mista. Alguns critérios para avaliação da ductilidade à compressão foram adaptados e mostraram bons resultados, possibilitando o cálculo do índice de ductilidade. / The use of concrete filled steel tubes especially in tall buildings is a tendency in several european, american and asian countries. The use of these members has several advantages: high resistance and ductility, saving of materials and labour, reduction of cross section dimensions and improvement in behaviour of the materials steel and concrete due the confinement. The main purpose of this study is provide some experimental results of the behaviour of concrete filled steel tubes concentrically loaded. The main experimental parameters considered were the influence of the cross-section shape and thickness of steel tube. Square, circular and rectangular cross-section shapes infilling with concrete of the 50MPa of strength were analyzed. The failure was characterized for crushing of the concrete and later local buckling of the steel section in several points. The strength capacity predicted for several standards showed good agreement with the experimental failure values although this does not consider the confinement of the concrete. The results of tests showed that the confinement effect contributes for improvement behaviour of materials, especially increasing the ductility of the high strength concrete. However the results showed that the triaxial confinement does not increase the axial capacity of the concrete filled steel tubes. Some methods to estimate the ductility of axially compressed concrete columns were adapted and showed good results permitting the calculation of the ductility index of short columns.
|
60 |
Estudo da transferência de forças de cisalhamento na ligação entre pilares mistos preenchidos e vigas / A study on shear forces transfer of connections involving steel beams and concrete-filled steel tubular columnsAraujo, Cynthia Meilli Silva 08 September 2009 (has links)
Este trabalho tem por objetivo investigar as ligações viga-pilar misto preenchido, no tocante à transferência de forças de cisalhamento na região de ligação. O estudo engloba uma investigação experimental com ensaios do tipo push-out com carregamento centrado no núcleo de concreto e uma simulação numérica no pacote computacional DIANA visando obter dados de comportamento do mecanismo de transferência de forças de cisalhamento, aplicado à região de ligação viga-pilar. Foram utilizados modelos com 800 mm de altura e seção quadrada de dimensão (200 x 200 x 6,3) mm obtida a partir da composição de dois perfis U (200 x 100 x 6,3) mm. A resistência à compressão média do concreto de preenchimento foi de 50 MPa. Ao todo, foram ensaiados 3 modelos de ligação, utilizando chapas de extremidade e barras rosqueadas como mecanismo de ligação viga-pilar. Como elementos para transferência de forças entre o tubo de aço e o núcleo de concreto foram usados conectores tipo pino com cabeça ou cantoneiras. Os resultados experimentais mostraram a eficiência das barras rosqueadas e dos conectores de cisalhamento na transferência dos esforços de cisalhamento na ligação viga-pilar e na interface perfil de aço e concreto. A simulação numérica teve concordância satisfatória com os resultados experimentais obtidos. / In the design of concrete-filled steel tubular columns, the concrete and the steel tube must work together in order to achieve the overall resistance, stiffness and stability requirements. It is important that exists an adequate mechanism to transfer the forces from the steel beam to the steel tube, and then to the concrete core. This work presents a study on shear transfer in connections involving concrete-filled steel tubular columns and steel beams. The work was divided in two parts, being the first an experimental analysis with push-out tests, and the second one a numerical simulation of the tests, using the software DIANA. The tested specimens were 800 mm height , with square section (200 x 200 x 6,3mm) obtained from two welded U-shape profiles. A concrete with compressive strength of 50 MPa was used as a filling for the columns. Altogether, three connections with steel end plates and passing bars were tested. Two types of shear connectors between steel column and concrete core were used: stud-bolts and angles, and a reference specimen without connectors was also tested. The results showed the efficiency of the shear connectors in the tranference of forces.
|
Page generated in 0.0704 seconds