• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 846
  • 83
  • 77
  • 11
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 1341
  • 1341
  • 1341
  • 260
  • 256
  • 255
  • 248
  • 212
  • 190
  • 164
  • 128
  • 116
  • 115
  • 112
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Ultrafast and magneto-optical spectroscopy of semiconductor heterostructures

January 2012 (has links)
This thesis presents spectroscopic results using semiconductor heterostructures important for both applied and fundamental physics. First, we studied short-period superlattices of InAs and GaSb that suggest a promising alternative to mercury cadmium telluride for mid-infrared detection. Our time-domain measurements help sample growers optimize growth conditions to maximize the carrier lifetime and determine the superlattice period and interface quality. The second area of research has a more fundamental focus. Here, we study the time-integrated emission and time-resolved population and emission properties of high-density excitons in an InGaAs quantum well sample in strong perpendicular magnetic field. Our time-integrated results indicate that two-dimensional magneto-excitons can appear to be stable against a Mott transition with the application of magnetic field. Our time-resolved results provide the first direct observation of superfluorescence using a semiconductor showing the population inversion of magneto-excitons suddenly drop from fully excited to completely unexcited emitting an intense pulse of coherent radiation.
402

Cooperative mechanisms in coupled motor proteins transport

January 2012 (has links)
Subcellular cargos are transported by enzyme molecules called molecular motors by using the chemical energy from hydrolysis of ATP and performing mechanical work in non-equilibrium. Certain motors tread on cytoskeleton structures i.e. microtubules and actin filaments in a linear manner. Due to the polarity of the cytoskeleton structures the motors can accomplish cellular transport along one direction. Cargos often rely upon the collective action of more than one motor to transport them in order to surmount the crowding and visco-elastic effects of the surrounding medium through higher force generation. To understand the mechanism of cargo transport by precisely two kinesin-1 motors a combination of experimental and theoretical approaches were employed. This thesis focuses on understanding the mechanism of transport by considering interactions between closely spaced motors on the microtubules. The main finding of this thesis is that motors under the influence of each other's interaction with microtubules do affect the cargo dynamics.
403

Inverse Partial Fluorescence Yield Spectroscopy

Achkar, Andrew January 2011 (has links)
X-ray absorption spectroscopy (XAS) is a powerful probe of electronic and spatial structure that has been at the heart of many advances in physics, biology, chemistry, engineering and the earth sciences. Unfortunately, the existing experimental techniques are subject to fundamental limitations that complicate the interpretation of x-ray absorption spectra in many important cases. These limitations have motivated an effort to develop an alternative measure of the absorption cross-section that is not subject to the same set of limitations. In this thesis, a technique known as inverse partial fluorescence yield (IPFY) is described which addresses this problem. IPFY differs from existing approaches in a significant way — by using an energy-discriminating photon detector, one gains access to fluorescence information from both resonant and non-resonant x-ray emission processes. We will show that the non-resonant emission is fundamentally related to the total absorption cross-section of a material through an inverse relation. This will be proven by extension of the general theory of fluorescence yield for the case of a thick, homogeneous specimen. We will also demonstrate the utility of IPFY with measurements of NiO, NdGaO₃, LNSCO, and stainless steel 304 at soft and intermediate x-ray energies. These experiments will highlight some essential features of IPFY spectroscopy and demonstrate how it can be an invaluable tool when the other experimental techniques fail to provide reliable spectra. We will also demonstrate how one can exploit the geometry dependence of IPFY to quantitatively determine the composition of a sample and the total x-ray absorption coefficient. Additionally, we will consider the special cases of multilayers and powder specimens, where the theory of fluorescence yield requires approximations and is not as well-behaved as in thick, homogenous specimens. Ultimately, these experiments and theoretical developments will be used to support the claim that IPFY is a bulk sensitive measure of the total x-ray absorption coefficient. Moreover, we will show that IPFY is not affected by saturation effects, is insensitive to surface contamination layers and provides reliable spectra even for strongly insulating materials. These properties make IPFY a suitable spectroscopic technique for studying XAS in a wide range of materials.
404

Magnetism in Complex Oxides Probed by Magnetocaloric Effect and Transverse Susceptibility

Bingham, Nicholas Steven 01 January 2013 (has links)
Magnetic oxides exhibit rich complexity in their fundamental physical properties determined by the intricate interplay between structural, electronic and magnetic degrees of freedom. The common themes that are often present in these systems are the phase coexistence, strong magnetostructural coupling, and possible spin frustration induced by lattice geometry. While a complete understanding of the ground state magnetic properties and cooperative phenomena in this class of compounds is key to manipulating their functionality for applications, it remains among the most challenging problems facing condensed-matter physics today. To address these outstanding issues, it is essential to employ experimental methods that allow for detailed investigations of the temperature and magnetic field response of the different phases. In this PhD dissertation, I will demonstrate the relatively unconventional experimental methods of magnetocaloric effect (MCE) and radio-frequency transverse susceptibility (TS) as powerful probes of multiple magnetic transitions, glassy phenomena, and ground state magnetic properties in a large class of complex magnetic oxides, including La0.7Ca0.3-xSrxMnO3 (x = 0, 0.05, 0.1, 0.2 and 0.25), Pr0.5Sr0.5MnO3, Pr1-xSrxCoO3 (x = 0.3, 0.35, 0.4 and 0.5), La5/8−xPrxCa3/8MnO3 (x = 0.275 and 0.375), and Ca3Co2O6. First, the influences of strain and grain boundaries, via chemical substitution and reduced dimensionality, were studied via MCE in La0.7Ca0.3-xSrxMnO3. Polycrystalline, single crystalline, and thin-film La0.7Ca0.3-xSrxMnO3 samples show a paramagnetic to ferromagnetic transition at a wide variety of temperatures as well as an observed change in the fundamental nature of the transition (i.e. first-order magnetic transition to second order magnetic transition) that is dependent on the chemical concentration and dimensionality. Systematic TS and MCE experiments on Pr0.5Sr0.5MnO3 and Pr0.5Sr0.5CoO3 have uncovered the different nature of low-temperature magnetic phases and demonstrate the importance of coupled structural/magnetocrystalline anisotropy in these half-doped perovskite systems. These findings point to the existence of a distinct class of phenomena in transition-metal oxide materials due to the unique interplay between structure and magnetic anisotropy, and provide evidence for the interplay of spin and orbital order as the origin of intrinsic phase separation in manganites. While Pr0.5Sr0.5MnO3 provides important insights into the influence of first- and second-order transitions on the MCE and refrigerant capacity (RC) in a single material, giving a good guidance on the development of magnetocaloric materials for active magnetic refrigeration, Pr1-xSrxCoO3 provides an excellent system for determining the structural entropy change and its contribution to the MCE in magnetocaloric materials. We have demonstrated that the structural entropy contributes significantly to the total entropy change and the structurally coupled magnetocrystalline anisotropy plays a crucial role in tailoring the magnetocaloric properties for active magnetic refrigeration technology. In the case of La5/8−xPrxCa3/8MnO3, whose bulk form is comprised of micron-sized regions of ferromagnetic (FM), paramagnetic (PM), and charge-ordered (CO) phases, TS and MCE experiments have evidenced the dominance of low-temperature FM and high-temperature CO phases. The "dynamic" strain liquid state is strongly dependent on magnetic field, while the "frozen" strain-glass state is almost magnetic field independent. The sharp changes in the magnetization, electrical resistivity, and magnetic entropy just below the Curie temperature occur via the growth of FM domains already present in the material, even in zero magnetic field. The subtle balance of coexisting phases and kinetic arrest are also probed by MCE and TS experiments, leading to a new and more comprehensive magnetic phase diagram. A geometrically frustrated spin chain compound Ca3Co2O6 provides an interesting case study for understanding the cooperative phenomena of low-dimensional magnetism and topological magnetic frustration in a single material. Our MCE studies have yielded new insights into the nature of switching between multi-states and competing interactions within spin chains and between them, leading to a more comprehensive magnetic phase diagram.
405

Synthesis and Properties of Polymer Nanocomposites with Tunable Electromagnetic Response

Stojak, Kristen Lee 01 January 2013 (has links)
Multifunctional polymer nanocomposites (PNCs) are attractive for the design of tunable RF and microwave components such as flexible electronics, attenuators, and antennas due to cost-effectiveness and durability of polymeric matrices. In this work, three separate PNCs were synthesized. Magnetite (Fe3O4) and cobalt ferrite (CFO) nanoparticles, synthesized by thermal decomposition, were used as PNC fillers. Polymers used in this work were a commercial polymer provided by the Rogers Corporation (RP) and polyvinylidene fluoride (PVDF). PNCs in this thesis consist of Fe3O4 in RP, CFO in RP, and Fe3O4 in PVDF. Characterization techniques for determining morphology of the nanoparticles, and their resulting PNCs, include x-ray diffraction, transmission electron microscopy and magnetometry. All magnetometry measurements were taken using a Quantum Design Physical Property Measurement System with a superconducting magnet. Temperature and external magnetic field magnetization measurements revealed that all samples exhibit superparamagnetic behavior at room temperature. Blocking temperature, coercivity and reduced remnant magnetization do not vary with concentration. Tunable saturation magnetization, based on nanoparticle loading, was observed across all PNCs, regardless of polymer or nanoparticle choice, indicating that this is an inherent property in all similar PNC materials. Tunability studies of the magneto-dielectric PNCs were carried out by adding the PNC to cavity and microstrip linear resonator devices, and passing frequencies of 1-6 GHz through them in the presence of transverse external magnetic fields of up to 4.5 kOe, provided by an electromagnet. Microwave characteristics were extracted from scattering parameters of the PNCs. In all cases, losses were reduced, quality factor was increased, and tunability of the resonance frequency was demonstrated. Strong magnetic field dependence was observed across all samples measured in this study.
406

Effects of disorder and low dimensionality on frozen dynamics in Ca3Co2-xMnxO6

Casas, Brian Wesley 16 September 2015 (has links)
Complex oxides represent an intersection of play grounds for the existence of exciting new fundamental physics and materials with potential technological implications. The realization of many exciting properties of these systems rely on the coupling of electronic, structural and magnetic degrees of freedom. Additionally, competing interactions within each type of coupling discussed previously lead to theoretically diverse ground states, which under the application of an external perturbation, can be tuned and probed. Ca3Co¬2-xMnxO6 represent a quasi-one dimensional Ising spin chain system oriented in an antiferromagnetic triangular lattice. The exotic behavior of the undoped compound Ca3Co2O6 has inspired work on continuing the fundamental understanding of frustrated magnetic systems. Through chemical doping of Manganese ions, the magnetic properties, namely the exotic spin glass like behavior can be enhanced for a modest doping range of x The effects of particle dimensionality were probed through the application of varied calcining conditions as to attempt to observe the altering of magnetic properties, mainly the out of equilibrium magnetization plateaus observed in Ca3Co1.75 Mn0.25O6. It appears that within the particle sizes studied the magnetic behavior is highly robust, even considering the inclusion of ionic disorder.
407

Applications of Many Body Dynamics of Solid State Systems to Quantum Metrology and Computation

Goldstein, Garry 18 March 2013 (has links)
This thesis describes aspects of dynamics of solid state systems which are relevant to quantum metrology and computation. It may be divided into three research directions (parts). For the first part, a new method to enhance precision measurements that makes use of a sensor’s environment to amplify its response to weak external perturbations is described. In this method a “central” spin is used to sense the dynamics of surrounding spins, which are affected by the external perturbations that are being measured. The enhancement in precision is determined by the number of spins that are coupled strongly to the central spin and is resilient to various forms of decoherence. For polarized environments, nearly Heisenberg-limited precision measurements can be achieved. The second part of the thesis focuses on the decoherence of Majorana fermions. Specializing to the experimentally relevant case where each mode interacts with its own bath we present a method to study the effect of external perturbations on these modes. We analyze a generic gapped fermionic environment (bath) interacting via tunneling with individual Majorana modes - components of a qubit. We present examples with both static and dynamic perturbations (noise), and derive a rate of information loss for Majorana memories, that depends on the spectral density of both the noise and the fermionic bath. For the third part of the thesis we discuss vortices in topological superconductors which we model as closed finite systems, each with an odd number of real fermionic modes. We show that even in the presence of many-body interactions, there are always at least two fermionic operators that commute with the Hamiltonian. There is a zero mode corresponding to the total Majorana operator [1] as well as additional linearly independent zero modes, one of which is continuously connected to the Majorana mode in the non-interacting limit. We also show that in the situation where there are two or more well separated vortices their zero modes have non-Abelian Ising statistics under braiding. / Physics
408

Hot Carriers in Graphene

Song, Justin Chien Wen 22 October 2014 (has links)
When energy relaxation between electrons and the lattice is slow, an elevated electronic temperature different from that of the lattice persists. In this regime, hot charge carriers control the energy transport in a material. In this thesis, I show how hot carriers can dominate graphene's response enabling it to exhibit novel properties. First, I examine how light is converted to electrical currents in graphene and show that hot carriers play an integral role in this multi-stage process. I show that photocurrent in graphene p-n junctions is dominated by a Photo-thermoelectric effect in which a light-induced elevated hot carrier temperature drives a thermoelectric current. Furthermore, I show that the generation and cooling of hot carriers in graphene during photoexcitation proceeds in an unusual way. In the former, carrier-carrier scattering dominates the initial photoexcitation cascade enabling efficient hot carrier generation. In the latter, a new cooling mechanism - disorder-assisted scattering (supercollisions) - dominates electron-lattice cooling over a wide range of temperatures (including room temperature). Second, I examine the transport characteristics of double layer graphene heterostructures (specifically, G/h-BN/G heterostructures). I show that Coulomb coupling results in vertical (out-of-plane) energy transfer between electrons in proximal (but electrically insulated) graphene layers. This couples lateral (in-plane) charge and energy transport of electrons in the two layers to give rise to a new energy-driven Coulomb drag (inter-layer transresistance) that dominates when the two layers are at charge neutrality. Third, I examine energy transport in charge neutral graphene. I show that the combination of fast carrier-carrier scattering, high electronic quality, and slow electron-lattice cooling (hot carriers) gives rise to a regime of ballistic heat transport. This manifest as electronic energy waves with velocity on the order of graphene's Fermi velocity. The new phenomena enabled by hot carriers and the ideas/approaches described in this thesis provide a basis with which to exploit hot carrier effects in graphene and opens new vistas for controlling and harnessing energy flows on the nanoscale. / Engineering and Applied Sciences
409

Theoretical Models of Spintronic Materials

Damewood, Liam James 11 January 2014 (has links)
<p> In the past three decades, spintronic devices have played an important technological role. Half-metallic alloys have drawn much attention due to their special properties and promised spintronic applications. This dissertation describes some theoretical techniques used in first-principal calculations of alloys that may be useful for spintronic device applications with an emphasis on half-metallic ferromagnets. I consider three types of simple spintronic materials using a wide range of theoretical techniques. They are (a) transition metal based half-Heusler alloys, like CrMnSb, where the ordering of the two transition metal elements within the unit cell can cause the material to be ferromagnetic semiconductors or semiconductors with zero net magnetic moment, (b) half-Heusler alloys involving Li, like LiMnSi, where the Li stabilizes the structure and increases the magnetic moment of zinc blende half-metals by one Bohr magneton per formula unit, and (c) zinc blende alloys, like CrAs, where many-body techniques improve the fundamental gap by considering the physical effects of the local field. Also, I provide a survey of the theoretical models and numerical methods used to treat the above systems.</p>
410

Surface Microstructure Evolution of Metallic Specimens Using the Large Chamber Scanning Electron Microscope

Egbujor, Grace 01 May 2015 (has links)
An initial study into the use of the large chamber scanning electron microscope (LCSEM) to interrogate the surface microstructure evolution of metallic specimens has been carried out. The LC-SEM located at Western Kentucky University is the largest instrument of its type at any university in the world. As such, unique measurements can be performed due to the size of its chamber and extended view of its optic system. Strain was varied for each individual specimen, and imaged using Secondary Electrons within the gauge length as well as near the grip position. Results will show progression of surface microstructures and nickel content of metallic specimens. Additionally, results will demonstrate the capability of the LC-SEM to carry out these types of measurements. Future measurements will include the incorporation of an in-situ uniaxial load frame for dynamic studies.

Page generated in 0.933 seconds