• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Instabilidade e bifurcação num problema de N+1 corpos

SILVA, Gersonilo Oliveira da 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T18:29:15Z (GMT). No. of bitstreams: 2 arquivo6741_1.pdf: 1075606 bytes, checksum: 5c0b3eab2c8eb91557cb31ad7686fbef (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nosso objetivo central é a análise da configuração poligonal com massas iguais dispostas nos vértices do polígono e uma massa desprezível num dos eixos de simetria. Fazemos no primeiro capítulo, a apresentação de conceitos e resultados que fundamentam nossa pespectiva à luz da Mecânica Celeste, incisivamente nas configurações centrais. Lá apresentamos as equações de Newton para o movimento, fazemos transferência destas para o formalismo Hamiltoniano, e expomos alguns resultados que evidenciam não só particularidades, como também a natureza destes sistemas, o que justifica seu uso no tratamento das equações de movimento. No segundo capítulo, discutimos, sucintamente, a caracterização das soluções particulares, denominadas configurações centrais, que compõem o escopo de nosso trabalho. No capítulo três, apresentamos o que seria uma possível cronologia do desenvolvimento matemático da análise das configurações poligonais e o estudo de sua estabilidade, adequando a exposição ao foco deste trabalho. No quarto capítulo, descrevemos o uso do operador de Perron-Frobenius l-ádico, para representação de funções complexas, o qual usamos para nossas análises. No quinto capítulo, fazemos uma dedução matemática das equações do problema de n+1 corpos, no caso em que os n corpos, denominados massas primárias, estão dispostos nos vértices de um polígono regular. Lá também apresentamos a estrutura da análise de estabilidade de um problema restrito. E apresentamos os resultados acerca da instabilidade da configuração provinda do problema restrito, para o primeiro eixo de simetria $[\theta=0]$ e para o segundo eixo $[\theta=\frac{\pi}{n}]$, com restrições aos valores de r e n. No sexto capítulo, apresentamos uma demonstração completa de um resultado de existência e unicidade para a posição de equilíbrio no problema restrito, para o primeiro eixo de simetria $[\theta=0]$ e a análise da bifurcação para este eixo. Abordamos uma análise das bifurcações para o segundo eixo $[\theta=\frac{\pi}{n}]$, obtendo alguns fatos. Exibimos no sétimo capítulo, uma análise numérica, feita com o auxílio do software Maple, onde são apresentados resultados bastante relevantes quanto a dinâmica das configurações quando usamos o valor de uma massa central à configuração como parâmetro, encontrando dois tipos de bifurcações. E também uma apresentação detalhada de estimativas que serviram de suporte no esclarecimento dos resultados apresentados nos capítulos anteriores
2

Finitude genérica de configurações centrais de dimensão n-2 em potenciais homogêneos com expoentes inteiros

SILVA, Thiago Dias Oliveira 10 June 2013 (has links)
Submitted by Pedro Barros (pedro.silvabarros@ufpe.br) on 2018-10-02T22:36:26Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Thiago Dias Oliveira Silva.pdf: 512318 bytes, checksum: c509161fbd479499ac21305535e21095 (MD5) / Approved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-11-22T22:24:30Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Thiago Dias Oliveira Silva.pdf: 512318 bytes, checksum: c509161fbd479499ac21305535e21095 (MD5) / Made available in DSpace on 2018-11-22T22:24:30Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Thiago Dias Oliveira Silva.pdf: 512318 bytes, checksum: c509161fbd479499ac21305535e21095 (MD5) Previous issue date: 2013-06-10 / CAPES / capítulo 2, realizamos um estudo detalhado das configurações centrais de dimensão n – 2. A maior parte dos resultados presentes nesse estudo foram obtidos em (1). Inspirados por este trabalho, realizamos um estudo inédito sobre as configurações de dimensão n – 3 apresentado nas seções 2:6 e 2:7. Na seção 2:8, provamos um critério para determinar a dimensão de uma configuração que depende unicamente das distancias mútuas entre os pontos. No capítulo 3, fazemos uma exposição sucinta dos resultados da Geometria Algébrica utilizados para obter o resultado de finitude. No capítulo 4, provamos que para uma escolha genérica de massas reais m₁, ..., mₙ positivas, o número de configurações centrais de dimensão n – 2 com potencial homogêneo de expoente inteiro é finito. Para tanto, utilizamos as equações polinomiais para configurações centrais de dimensão n – 2 que obtivemos no capítulo 2 para definir um conjunto algébrico quasi-afim que, em certo sentido, contém todas as configurações centrais de dimensão n – 2. Demonstramos que esse conjunto algébrico é não-singular e têm dimensão n – 1. Em seguida, interpretamos as configurações centrais de dimensão n – 2 como fibras de uma projeção no espaço das massas. Por fim, mostramos que para uma escolha “genérica” de massas reais as fibras da nossa aplicação projeção são finitas. / Central configurations are very important objects in Celestial Mechanics because they are the initial conditions of the only known explicit solutions to the n body problem. In the fist chapter, we formulate the concept of central configuration with homogeneous potentials and integer exponents, and discuss some of its basic properties. We also enunciate the main results on finitude of central configurations presented in the literature. In the second chapter, we present a detailed study of the central settings of dimension n – 2. The most of the results present in this study were obtained in (1). Inspired by this work, we conducted a new study on the n – 3 dimensional configurations presented in sections 2:6 and 2:7. In the section 2:8 , we prove a criterion for determining the dimension of a configuration that only depends on the mutual distances between the points. In the chapter 3, we make a brief exposition of the results of the Algebraic Geometry used in order to obtain the result of finitude. In chapter 4, we prove that for a generic choice of positive real masses m₁, ..., mₙ, the number of (n – 2) – dimensional central configurations with homogeneous potential and integer exponent is finite. In order to proof it, we use the polynomial equations for the central configurations of dimension n – 2 that we obtained in the chapter 2 to define a quasi-affine algebraic set that, in a certain sense, contains all the central configurations of dimension n – 2. We show that this algebraic set is non-singular and has dimension n – 1. Then we interpret the central configurations of n – 2 dimension as fibers of a projection in mass space. Finally, we show that for a “generic” choice of real masses, the fibers of our projection are finite.
3

Configurações centrais de Dziobek em problemas restritos e bifurcações

SANTOS, Alan Almeida January 2003 (has links)
Made available in DSpace on 2014-06-12T18:31:06Z (GMT). No. of bitstreams: 2 arquivo8527_1.pdf: 263693 bytes, checksum: 0d3fb144b2707a1a4d073bd064f138f0 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2003 / O problema dos n corpos consiste em descrever a evolução no tempo de n massas pontuais m1,..., mn que interagem segundo a lei de Newton da gravitação universal. As configurações centrais do problema de n corpos são condições iniciais no espaço de configuração que dão origem a movimentos homográficos, isto é, movimentos onde a configuração em cada instante é semelhante à configuração num instante inicial. Configurações centrais de n corpos em dimensão n-2 são o nosso objeto de estudo. Elas são também conhecidas como configurações de Dziobek. Investigamos o caso restrito de n+1 corpos com massas iguais para n=3 e n=4 onde calculamos todas as configurações desse problema e enunciamos um resultado geral de simetria. Uma generalização do resultado de Dieter Schmidt sobre bifurcações de uma configuração tetraedral não-convexa de cinco corpos também é obtida. Os cálculos de bifurcação são executados considerando um potencial da família homogênea à qual o Newtoniano pertence. E finalmente, conseguimos uma extensão de um resultado de simetria, devido a Alain Albouy e Jaume Llibre, para configurações espaciais do problema de 1+4 corpos. Nós provamos a persistência das simetrias das configurações quando a massa central é superior a um determinado limite finito
4

Aplicação da geometria algébrica à finitude das configurações centrais de Dziobek

Dias Oliveira Silva, Thiago 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T18:33:57Z (GMT). No. of bitstreams: 2 arquivo966_1.pdf: 398933 bytes, checksum: 6b1a61716ff5e872cbbdc32e0b60149d (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009 / Universidade Federal de Pernambuco / Em 1998 Smale propôs o seguinte problema aos matematicos deste século: "Considere o problema de n corpos. Para uma escolha real positiva das massas dos corpos, efinito o número de classes de configurações centrais módulo simetrias e homotetias correspondentes?" O objetivo deste trabalhoe demonstrar que para uma escolha "genérica" das massas, o numero de classes de configurações centrais de Dziobek e FInito. Esta e a resposta ao problema de Smale neste caso particular. Para tanto obtemos uma formulação algébrica que nos permite definir uma variedade quasi-projetiva que contem todos os pontos projetivos que provem de configurações centrais de Dziobek. A observação crucial e que todos os pontos projetivos desta variedade quasi-projetiva que provem de uma configuração central de Dziobek estão nas fibras de uma aplicação regular bastante especial. Mostrando que para nossa escolha das massas obtemos que as fibras desta aplicação regular são finitas, obtemos o resultado
5

O problema inverso para equilíbrios relativos poligonais

SANTOS, Marcelo Pedro dos 31 January 2014 (has links)
Submitted by Danielle Karla Martins Silva (danielle.martins@ufpe.br) on 2015-03-12T16:08:20Z No. of bitstreams: 2 TESE Marcelo Pedro dos Santos.pdf: 940932 bytes, checksum: 83d9bd0e5e4990047fbc22c7210f49cb (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-12T16:08:20Z (GMT). No. of bitstreams: 2 TESE Marcelo Pedro dos Santos.pdf: 940932 bytes, checksum: 83d9bd0e5e4990047fbc22c7210f49cb (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2014 / CAPES / Neste trabalho apresentamos um estudo para o problema de saber quais massas postas nos vértices de polígonos homotéticos dão origem a um equilíbrio relativo do Problema de N Corpos. Tentamos generalizar o Teorema de Perko-Walter-Elmabsout variando o número de polígonos, como também variando o expoente do potencial associado ao problema. Assim obtemos também resultados para o Problema de N Vórtices de Helmholtz.
6

Configurações centrais no problema restrito dos 4-corpos no plano

Fernandes Barros, Jean 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T18:28:23Z (GMT). No. of bitstreams: 2 arquivo4246_1.pdf: 1330348 bytes, checksum: 1a7b0bc74eca2991f866660cf076d055 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2008 / Universidade Estadual de Feira de Santana / Neste trabalho de pesquisa encontram-se demonstrados de forma analítica os resultados numéricos, obtidos na década de 40, e confirmados, também, numericamente, por Simó, na década de 70. Até nosso trabalho, o melhor que se tinha, neste sentido, era a tese de doutorado de J. R. Gannaway, na Vanderbilt University, Nashville, Tennessee, U.S.A., 1981, intitulada ``Determination of all central configurations in the planar four-body problem with one inferior mass' , orientada por Arenstorf, na qual, usando métodos analíticos, demonstrou casos particulares de alguns resultados do Pedersen. Porém, a parte substancial do trabalho do Pedersen ainda estava sem demonstração analítica, principalmente, a parte referente à curva de degenerescência. A intenção de Pedersen era contar o número de configurações centrais no Problema Restrito dos 4 Corpos no Plano (PR4CP). Para isso, Pedersen procurou saber, inicialmente, aonde o problema degenerava-se. E então, concluiu que as configurações centrais na condição de degenerescência formam uma curva fechada e simples no interior do triângulo equilátero, cujos vértices definem a solução Lagrangeana do problema. No Capítulo 2, ocupamo-nos por descrever analiticamente esta curva. E como uma consequência, obtivemos a caracterização algébrica da condição de degenerescência, a qual torna nosso método eficaz. O nosso método é inspirado no trabalho de Vincent, cujo método diz respeito à separação de raízes de um polinômio. Conjuntamente ao método de Vincent, utilizamos: o Resultante de Polinômios, a Regra de Sinais de Descartes, o Teorema Fundamental sobre Polinômios Simétricos, as Fórmulas de Cardano e a Natureza das Raízes da Equação Cúbica. Para realizarmos os cálculos utilizamos o software MAPLE. No Capítulo 3, demonstramos, por métodos analíticos, que as configurações centrais convexas (ver Teorema 18) e não-convexas exteriores ao triângulo (ver Teorema 19) são não-degeneradas. Estes teoremas são nossas primeiras contribuições ao PR4CP. No Capítulo 4, mostramos, por métodos analíticos, que a curva de degenerescência é fechada e simples, em conformidade com os resultados numéricos de Pedersen. Além disso, obtivemos algo inédito: a curva de degenerescência é analítica (ver Capítulo 4, Seções 4.3 e 4.4). Estes resultados são mais uma das nossas contribuições ao PR4CP. No capítulo 5, passamos a realizar a contagem do número de configurações no PR4CP. Inicialmente, mapeamos a curva de degenerescência no espaço dos parâmetros, mais precisamente, no interior do 2-simplexo. E verificamos que a curva mapeada é fechada e simples (ver Capítulo 5, Seção 5.1). Desta forma, utilizando o Teorema da Curva de Jordan e o Teorema da Aplicação Inversa, realizamos a contagem do número de configurações centrais no PR4CP (ver Capítulo 5, Seção 5.2)

Page generated in 0.0933 seconds