• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stress-Strain Model of Unconfined and Confined Concrete and Stress-block Parameters

Murugesan Reddiar, Madhu Karthik 2009 December 1900 (has links)
Stress-strain relations for unconfined and confined concrete are proposed to overcome some shortcomings of existing commonly used models. Specifically, existing models are neither easy to invert nor integrate to obtain equivalent rectangular stress-block parameters for hand analysis and design purposes. The stress?strain relations proposed are validated for a whole range of concrete strengths and confining stresses. Then, closed form expressions are derived for the equivalent rectangular stress-block parameters. The efficacy of the results is demonstrated for hand analysis applied for deriving the moment-curvature performance of a confined concrete column. Results are compared with those obtained from a computational fiber-element using the proposed stress-strain model and another widely used model; good agreement between the two is observed. The model is then utilized in the development of a new structural system that utilizes the positive attributes of timber and concrete to form a parallel. Timber has the advantage of being a light weight construction material, easy to handle, is environmentally friendly. However, large creep deflections and significant issues with sound transmission (the footfall problem) generally limit timber use to small spans and low rise buildings. Concrete topping on timber sub-floors mitigate some of these issues, but even with well engineered wood systems, the spans are relatively short. In this study, a new structural system called structural boxed-concrete, which utilizes the positive attributes of both timber and reinforced concrete to form a parallel system (different from timber-concrete composite system) is explored. A stress-block approach is developed to calculate strength and deformation. An analytical stress-block based moment-curvature analysis is performed on the timber-boxed concrete structural elements. Results show that the structural timber-boxed concrete members may have better strength and ductility capacities when compared to an equivalent ordinary reinforced concrete member.
12

Stress-Strain Model of Unconfined and Confined Concrete and Stress-block Parameters

Murugesan Reddiar, Madhu Karthik 2009 December 1900 (has links)
Stress-strain relations for unconfined and confined concrete are proposed to overcome some shortcomings of existing commonly used models. Specifically, existing models are neither easy to invert nor integrate to obtain equivalent rectangular stress-block parameters for hand analysis and design purposes. The stress?strain relations proposed are validated for a whole range of concrete strengths and confining stresses. Then, closed form expressions are derived for the equivalent rectangular stress-block parameters. The efficacy of the results is demonstrated for hand analysis applied for deriving the moment-curvature performance of a confined concrete column. Results are compared with those obtained from a computational fiber-element using the proposed stress-strain model and another widely used model; good agreement between the two is observed. The model is then utilized in the development of a new structural system that utilizes the positive attributes of timber and concrete to form a parallel. Timber has the advantage of being a light weight construction material, easy to handle, is environmentally friendly. However, large creep deflections and significant issues with sound transmission (the footfall problem) generally limit timber use to small spans and low rise buildings. Concrete topping on timber sub-floors mitigate some of these issues, but even with well engineered wood systems, the spans are relatively short. In this study, a new structural system called structural boxed-concrete, which utilizes the positive attributes of both timber and reinforced concrete to form a parallel system (different from timber-concrete composite system) is explored. A stress-block approach is developed to calculate strength and deformation. An analytical stress-block based moment-curvature analysis is performed on the timber-boxed concrete structural elements. Results show that the structural timber-boxed concrete members may have better strength and ductility capacities when compared to an equivalent ordinary reinforced concrete member.
13

Detaljstudie av tryckbrott i betongsliprar : Samband mellan tryckprovsresultat och val av dimensioneringsmetod / Detail study of compression failure in concrete sleepers : Correlation between pressure test results and choice of design method

Bülow Angeling, Jenny, Wikell, Sebastian January 2016 (has links)
En jämförelse av Abetongs beräkningsunderlag och statistik från tryckprov visar att sliprarna klarar mycket mer belastning än vad beräkningarna visar. I den här studien har en utvärdering av använda beräkningsmetoder gjorts, samt en jämförelse mellan olika dimensioneringsprinciper för att komma så nära resultaten vid tryckprov som möjligt. Beräkningar med förenklat tryckblock och idealiserad-rektangulär parabolisk arbetskurva visade att det senare alternativet gav ett något högre värde på sliprarnas momentkapacitet, men förändringen förklarade inte varför den verkliga momentkapaciteten är så mycket högre än den framräknade. Den faktor som enligt den här undersökningen påverkar betongens tryckhållfasthet och i sin tur ger en större momentkapacitet än vad tidigare beräkningar visar är förhindrad tvärutvidgning. Studien visar att hänsyn till förhindrad tvärutvidgning bör tas med i beräkningar på betongsliprars hållfasthet. Detta medför att det finns utrymme att minska betongklass på Abetongs slipermodell A26 från C58/70 till C50/60. / A comparison of the calculation data from Abetong and statistics from pressure tests shows that the sleepers can handle more load than the calculations show. In this study, an evaluation of used calculation methods has been made and a comparison between different principles of dimensioning to get as close to the result from the pressure tests as possible. Calculations with rectangular stress distribution and idealized parabola-rectangle diagram showed that the second alternative gave a bit higher value on the sleeper bending moment capacity, but the difference did not explain why the real bending moment capacity is so much higher than the calculated one. According to this study confined concrete gave a larger capacity than the previous calculations. With regards to that effect the compressive strength of the concrete almost doubled, which together with an increased critical strain gave a bending moment capacity very close the one obtained from the pressure tests. This study concludes that the confined concrete effect should be considered when calculating the concrete strength. This also means that there is a possibility to reduce the concrete strength of Abetong’s sleeper model A26 from C58/70 to C50/60.
14

Studie chování železobetonových sloupů zesílených ovinutím FRP tkaninou / Behaviour of reinforced concrete columns confined with FRP wrap

Niesner, Jakub January 2020 (has links)
Strengthening of reinforced columns confining by modern composite materials is effective method, allows quickly realized strengthening, without increase dimension of strengthening columns. Just like using reinforcing bars, is the mainly assumption for this method the multi-axis state tension and deducing confining pressure, which will increase strength of concrete. Improved of properties of confining concrete can be determined by using relationships, but there are considerably differences. This diploma theses, dealing with strengthening of circular reinforced columns confinement by external FRP fabric, compared approaches to design of reinforced concrete by confining and using the results of an analytical and numerical study to describe problem of confining concrete and compare factors influencing the final properties of the wrapped concrete.
15

Zesílení ŽB sloupu pomocí ocelové bandáže / Reinforcement concrete column strengthening via steel bandage

Stloukal, Štěpán January 2017 (has links)
The steel bandage is an economical and effective widely used method for strengthening RC columns. Diploma thesis reviews most common design proposals for the types of the bandage with directly loaded and not directly loaded steel angles. This work also includes a comparison of the different constitutive laws for confined concrete. In order to simulate real behaviour of strengthened structure the numerical analysis has been carried out using non-linear software ATENA. According to the European standards and adopted hypotheses the simplified analytical model has been derived to be able to calculate load-bearing capacity of a strengthened column under normal force and bending moment. The proposed model considers the contribution in confinement pressure caused by steel bandage and the contribution of directly loaded angles. In addition, the direct application on real frame structure has been performed.

Page generated in 0.0556 seconds