Spelling suggestions: "subject:"confounds"" "subject:"confound""
1 |
Found in Translation: Methods to Increase Meaning and Interpretability of Confound VariablesSeltzer, Ryan January 2013 (has links)
The process of research is fraught with rote terminology that, when used blindly, can bend our methodological actions away from our theoretical intentions. This investigation is aimed at developing two methods for bringing meaning and interpretability to research when we work with confounds. I argue, with the first method, that granting confounds substantive influence in a network of related variables (rather than viewing confounds as nuisance variables) enhances the conceptual dimension with which phenomena can be explained. I evaluated models differing in how confounds were specified using data from the Survey of Health, Ageing and Retirement in Europe (SHARE). Generally, minor alterations to model specifications, such as direction of causal pathways, did not change model parameter estimates; however, the conceptual meaning of how the confounds interacted with other variables in the model changed drastically. Another frequent misconceptualization of confounds, detailed by the second method, occurs when confounds are used as proxy variables to control for variance that is not directly measureable, and no explicit attempt is made to ensure that the proxy variable adequately represents the underlying, intended construct. For this second demonstration, I used SHARE data to estimate models varying in the degree to which proxy variables represent intended variables. Results showed that parameter estimates can differ substantially across different levels of proxy variable representation. When imperfect proxy variables are used, an insufficient amount of variance is removed from the observed spurious relationship between design variables. The findings from this methodological demonstration underscore the importance of precisely imbuing confounds with conceptual meaning and selecting proxy variables that accurately represent the underlying construct for which control is intended.
|
2 |
Multi-task learning for joint diagnosis of CNVs and psychiatric conditions from rs-fMRIHarvey, Annabelle 04 1900 (has links)
L'imagerie par résonance magnétique fonctionnelle à l'état de repos (IRMf-R) s'est imposée comme une technologie diagnostique prometteuse. Toutefois, l'application dans la pratique clinique des biomarqueurs de l'IRMf-R visant à capturer les mécanismes biologiques sous-jacents aux troubles psychiatriques a été entravée par le manque de généralisation. Le diagnostic de ces troubles repose entièrement sur des évaluations comportementales et les taux élevés de comorbidités et de chevauchement génétique et symptomatique confirment l'existence de facteurs latents communs à toutes les pathologies. De grandes mutations génétiques rares, appelées variants du nombre de copies (CNV), ont été associées à une série de troubles psychiatriques et ont des effets beaucoup plus importants sur la structure et la fonction du cerveau, ce qui en fait une voie prometteuse pour démêler la génétique des catégories diagnostiques actuelles. L'apprentissage multitâche est une approche prometteuse pour extraire des représentations communes à des tâches connexes, qui permet de mieux utiliser les données en tirant parti des informations partagées et en améliorant la généralisabilité. Nous avons recueilli un ensemble de données sans précédent composé de 19 CNV et de troubles psychiatriques et nous avons cherché à évaluer systématiquement les avantages potentiels de l'apprentissage multitâche pour la précision de la prédiction, afin d'effectuer un diagnostic conjoint de ces conditions interdépendantes. Nous avons estimé les tailles d'effet pour chaque condition, comparé la précision du diagnostic en utilisant des méthodes courantes d'apprentissage automatique, puis en utilisant l'apprentissage multitâches. Nous avons tenté de contrôler les multiples facteurs confondants tout au long des analyses et discutons des différentes approches permettant de le faire dans le contexte de la modélisation prédictive. L'hypothèse selon laquelle les facteurs latents partagés entre les CNV et les troubles psychiatriques les rendraient suffisamment liés en tant que tâches de prédiction pour bénéficier d'un apprentissage conjoint n'a pas été confirmée. Cependant, nous avons également appliqué l'apprentissage multitâche entre les sites pour prédire une cible commune et nous avons montré que la prédiction peut être améliorée lorsque les tâches sont très étroitement liées. Nous avons mis en œuvre un modèle léger de partage des paramètres durs, mais nos résultats et la littérature montrent que ce cadre n'est pas bien adapté aux tâches hétérogènes ou, de manière contre-intuitive, aux échantillons de petite taille. Nous pensons qu'il est possible d'exploiter les similitudes entre les CNV et les troubles psychiatriques en utilisant des méthodes qui modélisent les relations entre les tâches, mais la petite taille des échantillons pour les CNV rares constitue une limitation majeure pour l'application de l'apprentissage multitâche. / Resting state functional magnetic resonance imaging (rs-fMRI) has emerged as a promising diagnostic technology, however translation into clinical practice of rs-fMRI biomarkers that aim to capture the biological mechanisms underlying psychiatric disorders has been hindered by lack of generalizability. The diagnosis of these disorders is completely based on behavioural assessments and high rates of comorbidities and genetic and symptom overlap supports the existence of latent factors shared across conditions. Rare large genetic mutations, called copy number variants (CNVs), have been associated with a range of psychiatric conditions and have much larger effect sizes on brain structure and function, which makes them a promising avenue for untangling the genetics of the current diagnostic categories. Multi-task learning is a promising approach to extract common representations across related tasks that makes better use of data by leveraging shared information and improves generalizability. We collected an unprecedented dataset consisting of 19 CNVs and psychiatric disorders and aimed to systematically assess the potential benefits for prediction accuracy of using multi-task learning to perform joint diagnosis of these interlinked conditions. We estimated effect sizes for each condition, benchmarked diagnostic accuracy using common machine learning methods, and then using multi-task learning. We attempted to control for multiple confounding factors throughout the analyses, and discuss different approaches to do so in the predictive modelling context. The hypothesis that latent factors shared between CNVs and psychiatric conditions would make them sufficiently related as prediction tasks to benefit from being learned jointly was not supported. However, we also applied multi-task learning across sites to predict a common target and showed that prediction can be improved when tasks are very tightly related. We implemented a lightweight hard parameter sharing model, but evidence from our results and the literature shows this framework is not well suited to heterogeneous tasks or, counterintuitively, to small sample sizes. While we believe there is potential to exploit the similarities between CNVs and psychiatric conditions using methods that model relationships between tasks, small sample sizes for rare CNVs are a major limitation for the application of multi-task learning.
|
3 |
On Rules and Methods: Neural Representations of Complex Rule Sets and Related Methodological ContributionsGörgen, Kai 20 November 2019 (has links)
Wo und wie werden komplexe Regelsätze im Gehirn repräsentiert? Drei empirische Studien dieser Doktorarbeit untersuchen dies experimentell. Eine weitere methodische Studie liefert Beiträge zur Weiterentwicklung der genutzten empirischen Methode. Die empirischen Studien nutzen multivariate Musteranalyse (MVPA) funktioneller Magnetresonanzdaten (fMRT) gesunder Probanden. Die Fragestellungen der methodischen Studie wurden durch die empirischen Arbeiten inspiriert. Wirkung und Anwendungsbreite der entwickelten Methode gehen jedoch über die Anwendung in den empirischen Studien dieser Arbeit hinaus.
Die empirischen Studien bearbeiten Fragen wie: Wo werden Hinweisreize und Regeln repräsentiert, und sind deren Repräsentationen voneinander unabhängig? Wo werden Regeln repräsentiert, die aus mehreren Einzelregeln bestehen, und sind Repräsentationen der zusammengesetzten Regeln Kombinationen der Repräsentationen der Einzelregeln? Wo sind Regeln verschiedener Hierarchieebenen repräsentiert, und gibt es einen hierarchieabhängigen Gradienten im ventrolateralen präfrontalen Kortex (VLPFK)? Wo wird die Reihenfolge der Regelausführung repräsentiert? Alle empirischen Studien verwenden informationsbasiertes funktionales Mapping ("Searchlight"-Ansatz), zur hirnweiten und räumlich Lokalisierung von Repräsentationen verschiedener Elemente komplexer Regelsätze.
Kernergebnisse der Arbeit beinhalten: Kompositionalität neuronaler Regelrepräsentationen im VLPFK; keine Evidenz für Regelreihenfolgenrepräsentation im VLPFK, welches gegen VLPFK als generelle Task-Set-Kontrollregion spricht; kein Hinweis auf einen hierarchieabhängigen Gradienten im VLPFK.
Die komplementierende methodische Studie präsentiert "The Same Analysis Approach (SAA)", ein Ansatz zur Erkennung und Behebung experimentspezifischer Fehler, besonders solcher, die aus Design–Analyse–Interaktionen entstehen. SAA ist für relevant MVPA, aber auch für anderen Bereichen innerhalb und außerhalb der Neurowissenschaften. / Where and how does the brain represent complex rule sets? This thesis presents a series of three empirical studies that decompose representations of complex rule sets to directly address this question. An additional methodological study investigates the employed analysis method and the experimental design. The empirical studies employ multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data from healthy human participants. The methodological study has been inspired by the empirical work. Its impact and application range, however, extend well beyond the empirical studies of this thesis.
Questions of the empirical studies (Studies 1-3) include: Where are cues and rules represented, and are these represented independently? Where are compound rules (rules consisting of multiple rules) represented, and are these composed from their single rule representations? Where are rules from different hierarchical levels represented, and is there a hierarchy-dependent functional gradient along ventro-lateral prefrontal cortex (VLPFC)? Where is the order of rule-execution represented, and is it represented as a separate higher-level rule? All empirical studies employ information-based functional mapping ("searchlight" approach) to localise representations of rule set features brain-wide and spatially unbiased.
Key findings include: compositional coding of compound rules in VLPFC; no order information in VLPFC, suggesting VLPFC is not a general controller for task set; evidence against the hypothesis of a hierarchy-dependent functional gradient along VLPFC.
The methodological study (Study 4) introduces "The Same Analysis Approach (SAA)". SAA allows to detect, avoid, and eliminate confounds and other errors in experimental design and analysis, especially mistakes caused by malicious experiment-specific design-analysis interactions. SAA is relevant for MVPA, but can also be applied in other fields, both within and outside of neuroscience.
|
Page generated in 0.0407 seconds