• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rigidez e convexidade de hipersuperfícies na esfera

Souza, Edson Lopes de 19 November 2007 (has links)
Made available in DSpace on 2015-04-22T22:16:03Z (GMT). No. of bitstreams: 1 Edson Lopes de Souza.pdf: 437278 bytes, checksum: 4779bec085d95fd52b2a2756e302b47d (MD5) Previous issue date: 2007-11-19 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Consider an isometric immersion (phormula) of a compact, connected, orientable, n-dimensional (phormula), C1 Riemannian manifold Mn in a simply connected Riemannian manifold Nn+1 of constant sectional curvature. When Nn+1 is the Euclidean space Rn+1 and Mn has non-negative sectional curvatures, the following results, usually associated with the names of Hadamard and Conh-Vossen, are already known: (a) The image (phormula) is the boundary of a convex body of Rn+1, the map x is an embedding and Mn is diffeomorphic the unit sphere (phormula). (b) If (phormula) is another isometric immersion, fulfilling the hypotheses above, then exists an isometry (phormula) such that (phormula). The main goal of this work is to give a detailed proof of a version of the Theorem of Hadamard and Conh-Vossen due to the authors M. P. do Carmo and F. W. Warner, for the case where Nn+1 is the unit sphere (phormula) endowed with the Euclidean metric induced from (phormula), considering the hypothesis of that sectional curvatures of Mn compact, connected, orientable Riemannian manifold are bigger or equal to the curvature of the ambient manifold Sn+1. / Considere uma imersão isométrica (fórmula) de uma variedade Riemanniana Mn, n-dimensional (fórmula), C1, compacta, conexa, orientável em uma variedade Riemanniana simplesmente conexa Nn+1 de curvatura seccional constante. Quando Nn+1 é o espaço Euclidiano Rn+1 e Mn tem curvaturas seccionais não-negativas, os seguintes resultados normalmente associados com os nomes de Hadamard e Conh-Vossen, já são conhecidos: (a) A imagem (fórmula) é o bordo de um corpo convexo do Rn+1, x é um mergulho e Mn é difeomorfa à esfera unitária (fórmula) (b) Se (fórmula)é outra imersão isométrica, cumprindo as hipóteses acima, então existe uma isometria (fórmula) tal que (fórmula). O objetivo central desse trabalho é dar uma prova detalhada de uma versão do Teorema de Hadamard e Conh-Vossen, devido aos autores M. P. do Carmo e F. W. Warner, para o caso em que Nn+1 é a esfera unitária (fórmula) munida com a métrica canônica induzida por Rn+2, considerando a hipótese de que as curvaturas seccionais de Mn variedade Riemanniana compacta, conexa, orientável sejam maiores ou iguais que a curvatura da variedade ambiente Sn+1.

Page generated in 0.0282 seconds