• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 27
  • 10
  • 10
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 172
  • 22
  • 21
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Análise fotoelástica comparativa entre pilares protéticos sólidos e de parafuso passante para implantes com conexão cônica instalados em diferentes profundidades ósseas / Comparative photoelastic analysis between standard and regular ankylos abutments in conical abutment connection implants installed in different bone depths

Provinciatti, Mauricio Martins 22 January 2016 (has links)
As tensões de baixa intensidade contribuem para a remodelação óssea nos implantes osseointegráveis, enquanto as tensões de alta intensidade causam a reabsorção óssea abaixo da interface implante-pilar. A sobrecarga oclusal afeta a fisiologia do tecido ósseo, rompendo com o equilíbrio entre a neoformação e a reabsorção. Como consequência da desarmonia, lacunas surgem em meio a superfície óssea, criando um ambiente favorável à proliferação de patógenos e ao acúmulo de fibras. Com a continuidade da sobrecarga e com a permanência dos microrganismos o suporte ósseo é comprometido, resultando na falha do implante. Em condições normais de carregamento, os implantes com conexão cônica possibilitam uma distribuição homogênea das tensões. O posicionamento da plataforma protética abaixo da crista óssea determina a transferência das tensões para áreas distantes ao osso cortical. O presente estudo utilizou a análise fotoelástica para avaliar a distribuição de tensão em modelos experimentais com implantes com conexão cônica instalados na posição equicristal, 1,5 mm infraósseo e 3,0 mm infraósseo. Foram propostas reabilitações com coroas protéticas unitárias em cerâmica, cimentadas em pilares protéticos sólidos e de parafuso passante com alturas de transmucoso de 1,5 mm, 3,0 mm e 4,5 mm. Os implantes foram posicionados na posição correspondente ao primeiro molar inferior direito. Segundo as situações adotadas, os conjuntos implante/pilar foram avaliados isoladamente, adjacentes a réplicas do segundo pré-molar inferior direito e do segundo molar inferior direito e apenas adjacentes a réplicas do segundo pré-molar inferior direito. A carga aplicada aos modelos fotoelásticos foi de 200 Ncm para todas as situações. Nos modelos com réplicas dentais foi realizado o carregamento oclusal distribuído, nos modelos com implantes isolados o carregamento foi pontual na fossa central e distal das coroas protéticas. Os resultados obtidos revelaram que a indicação de um pilar protético em detrimento a outro se configurou segundo a presença ou não de elemento dental posterior à coroa protética, assim como também por intermédio da profundidade da plataforma do implante na crista óssea remanescente. Em extremidades livres com implantes infraósseo a distribuição de tensão proporcionada pelo pilar de parafuso passante foi superior a do pilar sólido. Com a presença do segundo molar a distribuição da tensão foi mais eficiente com o pilar sólido, independentemente da profundidade da plataforma do implante. Nos modelos fotoelásticos com extremidade livre, o deslocamento da plataforma para uma posição infraóssea determinou menores tensões ao tecido ósseo. Havendo contatos proximais bilaterais a distribuição da tensão foi favorecida quando o implante ocupou a posição infraóssea a 3,0 mm, estando conectado ao pilar de parafuso passante. Entretanto, quando conectado ao pilar sólido o implante equicristal apresentou melhor distribuição de tensão que os implantes infraósseo. / Low-intensity stresses contribute to bone remodeling, while high intensity stresses cause bone resorption, below implant-abutment junction in dental implants. The occlusal overload affects the physiology of bone tissue, disrupting the balance between new formation and resorption. As a result of the disharmony, gaps arise in the crestal bone, creating a favorable environment for the proliferation of pathogens and fiber accumulation. With the continued overloading and the permanence of microorganisms, the bone support is impaired, resulting in implant failure. In normal loading conditions the tapered connection implants enables a homogeneous distribution of stresses. The subcrestal positioning of the prosthetic platform determines the transfer of stresses to distant areas from the cortical bone. This study used photoelastic analysis to evaluate the stress distribution in experimental models in conical abutment connection implants placed in equicristal position, 1.5 mm and 3.0 mm subcrestal positions. Rehabilitations were proposed for single prosthetic ceramic crowns cemented in standard and regular Ankylos prosthetic abutments with transmucosal height of 1.5 mm, 3.0 mm and 4.5 mm. Implants were placed in the position corresponding to the first lower right molar. According to the chosen situations, sets of implant/abutments were evaluated separately, adjacent to replicas of the second lower right premolar and second lower right molar and just adjacent to replicas of the second right premolar. The load applied to the photoelastic models was 200 Ncm in all cases. In models with dental replicas, distributed occlusal loading was performed; on models with isolated implant, loading was precise in the central and distal fossa of prosthetic crowns. The results showed that the indication of an abutment over another is depended on the presence or absence of a dental element posterior to the prosthetic crown, and of the implant platform depth of the remaining bone crest. In distal extension with subcrestal implants, stress distribution provided by Regular Ankylos prosthetic abutments was better than that provided by the Standard Ankylos abutment. With the presence of the second molar distribution of stress was more efficient with the Standard Ankylos abutment, regardless of the depth of the implant platform. In photoelastic models with distal extension, the platform displacement to a subcrestal position determined lower stress to the bone. Having bilateral proximal contacts, the stress distribution was favored when the implant was placed in a 3.0 mm subcrestal position with Regular Ankylos prosthetic abutments. However, when connected to the Standard Ankylos abutment, implant placed in equicristal position showed better stress distribution than subcrestal implants.
82

Torção Analítica e extensões para o Teorema de Cheeger Müller. / Analytic Torsion and extensions for the Cheeger Müller theorem

Luiz Roberto Hartmann Júnior 10 December 2009 (has links)
Estudamos a Torção Analítica para variedades com bordo e ainda com singuaridades do tipo cônico, mais especificamente, para um cone métrico limitado, com o propósito de investigar a extensão natural do Teorema de Cheeger Müller para tais espaços. Começamos determinando a Torção Analítica do disco e de variedades com o bordo totalmente geodésico, por meio de ferramentas geométricas desenvolvidas por J. Brüning e X. Ma. Posteriormente, usando ferramentas analíticas desenvolvidas por M. Spreafico, determinamos a Torção Analítica do cone sobre uma esfera de dimensão ímpar e provamos um teorema do tipo Cheeger Müller para este espaço. Mais ainda, provamos que o resualto de J. Brüning e X. Ma estende para o cone sobre uma esfera de dimensão ímpar / We study for Analytic Torsion of manifolds with boundary and also with conical singularities , more specifically, for a finite metric cone, with the purpose of investing the natural extension of the Cheeger Müller theorem for such spaces. we start by computing the Analytic Torsion of an any dimensional disc and of a manifold with totally boundary, by using geometric tools development by J. Brüning and X. Ma. Then, by using analytic tools development by M. Spreafico, we determine the Analytic Torsion of a cone over an odd dimensional sphere and we prove a theorem of Cheeger Müller type space. Moreover, we prove that the result of J. Brüning and X. Ma extends to the cone over an odd dimensional sphere
83

Análise fotoelástica comparativa entre pilares protéticos sólidos e de parafuso passante para implantes com conexão cônica instalados em diferentes profundidades ósseas / Comparative photoelastic analysis between standard and regular ankylos abutments in conical abutment connection implants installed in different bone depths

Mauricio Martins Provinciatti 22 January 2016 (has links)
As tensões de baixa intensidade contribuem para a remodelação óssea nos implantes osseointegráveis, enquanto as tensões de alta intensidade causam a reabsorção óssea abaixo da interface implante-pilar. A sobrecarga oclusal afeta a fisiologia do tecido ósseo, rompendo com o equilíbrio entre a neoformação e a reabsorção. Como consequência da desarmonia, lacunas surgem em meio a superfície óssea, criando um ambiente favorável à proliferação de patógenos e ao acúmulo de fibras. Com a continuidade da sobrecarga e com a permanência dos microrganismos o suporte ósseo é comprometido, resultando na falha do implante. Em condições normais de carregamento, os implantes com conexão cônica possibilitam uma distribuição homogênea das tensões. O posicionamento da plataforma protética abaixo da crista óssea determina a transferência das tensões para áreas distantes ao osso cortical. O presente estudo utilizou a análise fotoelástica para avaliar a distribuição de tensão em modelos experimentais com implantes com conexão cônica instalados na posição equicristal, 1,5 mm infraósseo e 3,0 mm infraósseo. Foram propostas reabilitações com coroas protéticas unitárias em cerâmica, cimentadas em pilares protéticos sólidos e de parafuso passante com alturas de transmucoso de 1,5 mm, 3,0 mm e 4,5 mm. Os implantes foram posicionados na posição correspondente ao primeiro molar inferior direito. Segundo as situações adotadas, os conjuntos implante/pilar foram avaliados isoladamente, adjacentes a réplicas do segundo pré-molar inferior direito e do segundo molar inferior direito e apenas adjacentes a réplicas do segundo pré-molar inferior direito. A carga aplicada aos modelos fotoelásticos foi de 200 Ncm para todas as situações. Nos modelos com réplicas dentais foi realizado o carregamento oclusal distribuído, nos modelos com implantes isolados o carregamento foi pontual na fossa central e distal das coroas protéticas. Os resultados obtidos revelaram que a indicação de um pilar protético em detrimento a outro se configurou segundo a presença ou não de elemento dental posterior à coroa protética, assim como também por intermédio da profundidade da plataforma do implante na crista óssea remanescente. Em extremidades livres com implantes infraósseo a distribuição de tensão proporcionada pelo pilar de parafuso passante foi superior a do pilar sólido. Com a presença do segundo molar a distribuição da tensão foi mais eficiente com o pilar sólido, independentemente da profundidade da plataforma do implante. Nos modelos fotoelásticos com extremidade livre, o deslocamento da plataforma para uma posição infraóssea determinou menores tensões ao tecido ósseo. Havendo contatos proximais bilaterais a distribuição da tensão foi favorecida quando o implante ocupou a posição infraóssea a 3,0 mm, estando conectado ao pilar de parafuso passante. Entretanto, quando conectado ao pilar sólido o implante equicristal apresentou melhor distribuição de tensão que os implantes infraósseo. / Low-intensity stresses contribute to bone remodeling, while high intensity stresses cause bone resorption, below implant-abutment junction in dental implants. The occlusal overload affects the physiology of bone tissue, disrupting the balance between new formation and resorption. As a result of the disharmony, gaps arise in the crestal bone, creating a favorable environment for the proliferation of pathogens and fiber accumulation. With the continued overloading and the permanence of microorganisms, the bone support is impaired, resulting in implant failure. In normal loading conditions the tapered connection implants enables a homogeneous distribution of stresses. The subcrestal positioning of the prosthetic platform determines the transfer of stresses to distant areas from the cortical bone. This study used photoelastic analysis to evaluate the stress distribution in experimental models in conical abutment connection implants placed in equicristal position, 1.5 mm and 3.0 mm subcrestal positions. Rehabilitations were proposed for single prosthetic ceramic crowns cemented in standard and regular Ankylos prosthetic abutments with transmucosal height of 1.5 mm, 3.0 mm and 4.5 mm. Implants were placed in the position corresponding to the first lower right molar. According to the chosen situations, sets of implant/abutments were evaluated separately, adjacent to replicas of the second lower right premolar and second lower right molar and just adjacent to replicas of the second right premolar. The load applied to the photoelastic models was 200 Ncm in all cases. In models with dental replicas, distributed occlusal loading was performed; on models with isolated implant, loading was precise in the central and distal fossa of prosthetic crowns. The results showed that the indication of an abutment over another is depended on the presence or absence of a dental element posterior to the prosthetic crown, and of the implant platform depth of the remaining bone crest. In distal extension with subcrestal implants, stress distribution provided by Regular Ankylos prosthetic abutments was better than that provided by the Standard Ankylos abutment. With the presence of the second molar distribution of stress was more efficient with the Standard Ankylos abutment, regardless of the depth of the implant platform. In photoelastic models with distal extension, the platform displacement to a subcrestal position determined lower stress to the bone. Having bilateral proximal contacts, the stress distribution was favored when the implant was placed in a 3.0 mm subcrestal position with Regular Ankylos prosthetic abutments. However, when connected to the Standard Ankylos abutment, implant placed in equicristal position showed better stress distribution than subcrestal implants.
84

Caracterização e otimização de um sistema de aquecimento de água utilizando coletor solar com concentrador cônico / Characterization and optimization of a solar water heating system using solar collector with conical concentrator

Toniazzo, Fernando 04 April 2016 (has links)
Made available in DSpace on 2017-07-10T15:14:39Z (GMT). No. of bitstreams: 1 DissertacaoFerandoToniazzo.pdf: 4063087 bytes, checksum: 32e14216dde0f5bd7619d1a08ef14e8c (MD5) Previous issue date: 2016-04-04 / Fundação Araucária / This work aims to optimize a solar water heating system for use on small farms. The solar heating system to be optimized is based on a collector with conical concentrator. The principle of concentration of light in a solar funnel collector comes down in abstraction and reflection of solar radiation to central hub with a tapered inner faces reflective. The solar energy concentration area is occupied by a receiver with high thermal conductivity material, suitably isolated by transparent surfaces for forming the greenhouse, where thermal energy is transferred to a working fluid. The characterization of the system shall take place with test runs the field to relate the proposed changes as a function of system efficiency. The method is summarized in data sampling in different scenarios, which vary according to the heating system (passive and active) and solar tracking (manual and stationary). Preliminary results show the optimization of the absorber geometry and the interaction of light in a conical concentrator. The results demonstrate that the scenarios with solar tracker have higher efficiency than with fixed orientation and solar heating systems operated actively are more efficient than passive systems / Este trabalho teve por objetivo otimizar um sistema de aquecimento solar de água para uso em pequenas propriedades rurais. O sistema de aquecimento solar otimizado é baseado em um coletor com concentrador cônico. O princípio de concentração de luz em um coletor solar com concentrador cônico resume-se na captação e reflexão da radiação solar ao centro de um concentrador afunilado com faces internas refletivas. A área de concentração de energia solar é ocupada por um receptor com material de alta condutibilidade térmica, devidamente isolado por superfícies transparentes para formação do efeito estufa, onde a energia térmica é transferida para um fluido de trabalho. A caracterização do sistema se efetuou com execuções de testes a campo para relacionar as mudanças propostas em função da eficiência do sistema. A metodologia constituiu-se de amostragens de dados em diferentes cenários, os quais variaram de acordo com o sistema de aquecimento (passivo e ativo) e rastreamento solar (manual e estacionário). Os resultados demonstraram que os cenários com seguidor solar apresentaram maior eficiência do que os com orientação fixa e os sistemas de aquecimento solar operados de forma ativa foram mais eficientes do que os sistemas passivos.
85

Analytical vortex solutions to Navier-Stokes equation

Tryggeson, Henrik January 2007 (has links)
Fluid dynamics considers the physics of liquids and gases. This is a branch of classical physics and is totally based on Newton's laws of motion. Nevertheless, the equation of fluid motion, Navier-Stokes equation, becomes very complicated to solve even for very simple configurations. This thesis treats mainly analytical vortex solutions to Navier-Stokes equations. Vorticity is usually concentrated to smaller regions of the flow, sometimes isolated objects, called vortices. If one are able to describe vortex structures exactly, important information about the flow properties are obtained. Initially, the modeling of a conical vortex geometry is considered. The results are compared with wind-tunnel measurements, which have been analyzed in detail. The conical vortex is a very interesting phenomenaon for building engineers because it is responsible for very low pressures on buildings with flat roofs. Secondly, a suggested analytical solution to Navier-Stokes equation for internal flows is presented. This is based on physical argumentation concerning the vorticity production at solid boundaries. Also, to obtain the desired result, Navier-Stokes equation is reformulated and integrated. In addition, a model for required information of vorticity production at boundaries is proposed. The last part of the thesis concerns the examples of vortex models in 2-D and 3-D. In both cases, analysis of the Navier-Stokes equation, leads to the opportunity to construct linear solutions. The 2-D studies are, by the use of diffusive elementary vortices, describing experimentally observed vortex statistics and turbulent energy spectrums in stratified systems and in soapfilms. Finally, in the 3-D analysis, three examples of recent experimentally observed vortex objects are reproduced theoretically. First, coherent structures in a pipe flow is modeled. These vortex structures in the pipe are of interest since they appear for Re in the range where transition to turbulence is expected. The second example considers the motion in a viscous vortex ring. The model, with diffusive properties, describes the experimentally measured velocity field as well as the turbulent energy spectrum. Finally, a streched spiral vortex is analysed. A rather general vortex model that has many degrees of freedom is proposed, which also may be applied in other configurations.
86

Monitoring fluidized bed dryer hydrodynamics using pressure fluctuations and electrical capacitance tomography

Chaplin, Gareth Edgar 24 March 2005
As part of the production of certain solid-dosage pharmaceuticals, granulated ingredients are dried in a batch fluidized bed dryer. Currently, the determination of the completion of the drying process is accomplished through measurements of product or outlet air temperatures. No quantitative measurement of hydrodynamic behaviour is employed. Changes in bed hydrodynamics caused by variations in fluidization velocity may lead to increased particle attrition. In addition, excessive desiccation of the granules caused by inaccurate determination of the drying endpoint may lead to an increase in the thermal and mechanical stresses within the granules. The activity of future high-potency or peptide based drug products may be influenced by these effects. Therefore, the quantification of hydrodynamic changes may be a key factor in the tighter control of both fluidization velocity and product moisture, which are critical for maintaining product quality. <p>High-frequency measurements of pressure fluctuations in a batch fluidized bed dryer containing pharmaceutical granulate have been used to provide a global, non-intrusive indication of the hydrodynamic changes occurring throughout the drying process. A chaotic attractor comparison statistical test known as the S-statistic, has been applied to quantify these changes in drying and a related unit operation, fluidized bed granulation. The S-statistic showed a sensitivity to moisture which is not seen with frequency and amplitude analysis. In addition, the S-statistic has been shown to be useful in identifying an undesirable bed state associated with the onset of entrainment in a bed instrumented for the collection of both pressure fluctuation and entrainment data. Thus, the use of the S-statistic analysis of pressure fluctuations may be utilized as a low-cost method for determining product moisture or changes hydrodynamic state during fluidized bed drying. <p>Electrical capacitance tomography (ECT) has also been applied in this study to image the flow structure within a batch fluidized bed used for the drying of pharmaceutical granulate. This represents the first time that ECT has been applied to a bed of wet granulate material. This was accomplished through the use of a novel dynamic correction technique which accounts for the significant reduction in electrical permittivity occurring as moisture is lost during the drying process. The correction has been independently verified using x-ray tomography. <p>Investigation of the ECT images taken in the drying bed indicates centralized bubbling behaviour for approximately the first 5 minutes of drying. This behaviour is a result of the high liquid loading of the particles at high moisture. Between moisture contents of 18-wt% and 10-wt%, the tomograms show an annular pattern of bubbling behaviour with a gradual decrease in the cross-sectional area involved in bubbling behaviour. The dynamic analysis of this voidage data with the S-statistic showed that a statistically significant change occurs during this period near the walls of the vessel, while the centre exhibits less variation in dynamic behaviour. The changes identified by the S-statistic analysis of voidage fluctuations near the wall were similar to those seen in the pressure fluctuation measurements. This indicates that the source of the changes identified by both these measurement techniques is a result of the reduction in the fraction of the bed cross-section involved in bubbling behaviour. At bed moisture contents below 5-wt%, rapid divergence was seen in the S-statistic applied to both ECT and pressure fluctuation measurements. This indicates that a rapid change in dynamics occurs near the end of the drying process. This is possibly caused by the entrainment of fines at this time, or the build-up of electrostatic charge. <p>The use of the complimentary pressure fluctuation and ECT measurement techniques have identified changes occurring as a result of the reduction of moisture during the drying process. Both the localized changes in the voidage fluctuations provided by the ECT imaging and the global changes shown by the pressure fluctuation measurements indicate significant changes in the dynamic behaviour caused by the reduction of moisture during the drying process. These measurement techniques could be utilized to provide an on-line indication of changes in hydrodynamic regime. This information may be invaluable for the future optimization of the batch drying process and accurate determination of the drying endpoint.
87

Experimental studies and CFD simulations of conical spouted bed hydrodynamics

Wang, Zhiguo 11 1900 (has links)
Conical spouted beds have been commonly used for drying suspensions, solutions and pasty materials. They can also be utilized in many other processes, such as catalytic partial oxidation of methane to synthesis gas, coating of tablets, coal gasification and liquefaction, pyrolysis of sawdust or mixtures of wood residues. The main objectives of this work include both the experimental research and mathematical modelling of the conical spouted bed hydrodynamics. For experimental research, pressure transducers and static pressure probes were applied to investigate the evolution of the internal spout and the local static pressure distribution; optical fibre probes were utilized to measure axial particle velocity profiles and voidage profiles; the step tracer injection technique using helium as the tracer and thermal conductivity cells as detectors was used to investigate the gas mixing behaviour inside a conical spouted bed. It was found that many factors might affect calibration of the effective distance of an optical fibre probe. Therefore, a new calibration setup was designed and assembled, and a comprehensive sensitivity analysis was conducted to calibrate the optical probes used in this study. For mathematical modelling, a stream-tube model based on the bed structure inside a conical spouted bed was proposed to simulate partial spouting states. By introducing an adjustable parameter, this model is capable of predicting the total pressure drop under different operating conditions, and estimating axial superficial gas velocity profiles and gauge pressure profiles. A mathematical model based on characteristics of conical spouted beds and the commercial software FLUENT was also developed and validated using measured experimental data. The proposed new CFD model can simulate both stable spouting and partial spouting states, with an adjustable solids-phase source term. At stable spouting states, simulation results agree very well with almost all experimental data, such as static pressure profiles, axial particle velocity profiles, voidage profiles etc. A comprehensive sensitivity analysis was also conducted to investigate the effect of all possible factors on simulation results, including the fluid inlet profile, solid bulk viscosity, frictional viscosity, restitution coefficient, exchange coefficient, and solid phase source term. The proposed new CFD model was also used successfully to simulate gas mixing behaviours inside a conical spouted bed, and simulate cylindrical packed beds as well as cylindrical fluidized beds in one code package.
88

Experimental studies and CFD simulations of conical spouted bed hydrodynamics

Wang, Zhiguo 11 1900 (has links)
Conical spouted beds have been commonly used for drying suspensions, solutions and pasty materials. They can also be utilized in many other processes, such as catalytic partial oxidation of methane to synthesis gas, coating of tablets, coal gasification and liquefaction, pyrolysis of sawdust or mixtures of wood residues. The main objectives of this work include both the experimental research and mathematical modelling of the conical spouted bed hydrodynamics. For experimental research, pressure transducers and static pressure probes were applied to investigate the evolution of the internal spout and the local static pressure distribution; optical fibre probes were utilized to measure axial particle velocity profiles and voidage profiles; the step tracer injection technique using helium as the tracer and thermal conductivity cells as detectors was used to investigate the gas mixing behaviour inside a conical spouted bed. It was found that many factors might affect calibration of the effective distance of an optical fibre probe. Therefore, a new calibration setup was designed and assembled, and a comprehensive sensitivity analysis was conducted to calibrate the optical probes used in this study. For mathematical modelling, a stream-tube model based on the bed structure inside a conical spouted bed was proposed to simulate partial spouting states. By introducing an adjustable parameter, this model is capable of predicting the total pressure drop under different operating conditions, and estimating axial superficial gas velocity profiles and gauge pressure profiles. A mathematical model based on characteristics of conical spouted beds and the commercial software FLUENT was also developed and validated using measured experimental data. The proposed new CFD model can simulate both stable spouting and partial spouting states, with an adjustable solids-phase source term. At stable spouting states, simulation results agree very well with almost all experimental data, such as static pressure profiles, axial particle velocity profiles, voidage profiles etc. A comprehensive sensitivity analysis was also conducted to investigate the effect of all possible factors on simulation results, including the fluid inlet profile, solid bulk viscosity, frictional viscosity, restitution coefficient, exchange coefficient, and solid phase source term. The proposed new CFD model was also used successfully to simulate gas mixing behaviours inside a conical spouted bed, and simulate cylindrical packed beds as well as cylindrical fluidized beds in one code package.
89

Electrochemical Characterizations and Theoretical Simulations of Transport Behaviors at Nanoscale Geometries and Interfaces

Liu, Juan 12 November 2012 (has links)
Since single nanopores were firstly proposed as a potential rapid and low-cost tool for DNA sequencing in 1990s (PNAS, 1996, 93, 13770), extensive studies on both biological and synthetic nanopores and nanochannels have been reported. Nanochannel based stochastic sensing at single molecular level has been widely reported through the detection of transient ionic current changes induced by geometry blockage due to analytes translocation. Novel properties, including ion current rectification (ICR), memristive and memcapacitive behaviors were reported. These fundamental properties of nanochannels arise from the nanoscale dimensions and enables applications not only in single molecule sensing, but also in drug delivery, electrochemical energy conversion, concentration enrichment and separation, nanoprecipitation, nanoelectronics etc. Electrostatic interactions at nanometer-scale between the fixed surface charges and mobile charges in solution play major roles in those applications due to high surface to volume ratio. However, the knowledge of surface charge density (SCD) at nanometer scale is inaccessible within nanoconfinement and often extrapolated from bulk planar values. The determination of SCD at nanometer scale is urgently needed for the interpretation of aforementioned phenomena. This dissertation mainly focuses on the determination of SCD confined at a nanoscale device with known geometry via combined electroanalytical measurements and theoretical simulation. The measured currents through charged nanodevices are different for potentials with the same amplitude but opposite polarities, which deviates away from linear Ohm's behavior, known as ICR. Through theoretical simulation of experiments by solving Poisson and Nernst-Planck equations, the SCD within nanoconfinement is directly quantified for the first time. An exponential gradient SCD is introduced on the interior surface of a conical nanopre based on the gradient distribution of applied electric field. The physical origin is proposed based on the facilitated deprotonation of surface functional groups by the applied electric field. The two parameters that describe the non-uniform SCD distribution: maximum SCD and distribution length are determined by fitting high- and low-conductivity current respectively. The model is validated and applied successfully for quantification and prediction of mass transport behavior in different electrolyte solutions. Furthermore, because the surface charge distribution, the transport behaviors are intrinsicaly heterogeneous at nanometer scale, the concept is extended to noninvasively determine the surface modification efficacy of individual nanopore devices. Preliminary results of single molecule sensing based on streptavidin-iminobiotin are included. The pH dependent binding affinity of streptavidin-iminobiotin binding is confirmed by different current change signals ("steps" and "spikes") observed at different pHs. Qualitative concentration and potential dependence have been established. The chemically modified nanopores are demonstrated to be reusable through regenerating binding surface.
90

Impact of Metallic Projectiles on a Ceramic Target Surface : Transition Between Interface Defeat and Penetration

Renström, René January 2006 (has links)
The purpose of this thesis is to gain understanding of the load on flat target surfaces produced by projectile impact. Models are proposed from which upper and lower bounds can be derived for the transition be-tween interface defeat and normal penetration. It is shown that the dominating contribution to the normal load is generally provided by the hydrodynamic pressure due to the effect of inertia. In addition it is shown that the contributions from yield strength and compressibility are also significant. For a cylindrical tungsten alloy projectile at an impact velocity representative of to-day’s ordnance velocities, the contributions to the load intensity on the axis of symmetry from yield strength and compressibility are shown to be 15% and 3.4%, respectively, of that of inertia. Impact tests have shown that for conical projectiles transition from interface defeat to penetration occurs at a significantly lower impact velocity than for cylindrical projectiles. In order to better understand the influence of projectile shape, a conical projectile in axi-symmetric impact is studied by use of an analytical model for self-similar flow, and the results obtained are compared to results of numerical simula-tions. It is shown how the maximum load intensity, and the position of the maximum, depends on the apex angle. For an apex angle of 90º, the maximum load intensity is found to be almost three times that pro-duced by a cylindrical projectile with the same impact velocity. This maximum occurs well off the axis of symmetry and is 20% larger than the load intensity at this axis. Both the self-similar model and the nu-merical simulations show that the contribution to the load intensity from compressibility is positive below and negative above an apex angle of around 80º. The contribution of yield strength to the load in-tensity at centre of impact depends only weakly on the apex angle and is therefore similar to that of a cylindrical projectile.

Page generated in 0.099 seconds