Spelling suggestions: "subject:"conifold resolving"" "subject:"conifold dissolvido""
1 |
Efeitos de fluxo geométrico sobre o campo vetorial de calibre em suas dimensõesCosta, Francisco Wagner Vasconcelos da January 2015 (has links)
COSTA, Francisco Wagner Vasconcelos da. Efeitos de fluxo geométrico sobre o campo vetorial de calibre em suas dimensões. 2015. 74 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2016-06-10T19:46:18Z
No. of bitstreams: 1
2015_tese_fwvcosta.pdf: 1328754 bytes, checksum: 2273ef925958d4503e72646958aeacd4 (MD5) / Approved for entry into archive by Edvander Pires (edvanderpires@gmail.com) on 2016-06-10T19:47:07Z (GMT) No. of bitstreams: 1
2015_tese_fwvcosta.pdf: 1328754 bytes, checksum: 2273ef925958d4503e72646958aeacd4 (MD5) / Made available in DSpace on 2016-06-10T19:47:07Z (GMT). No. of bitstreams: 1
2015_tese_fwvcosta.pdf: 1328754 bytes, checksum: 2273ef925958d4503e72646958aeacd4 (MD5)
Previous issue date: 2015 / Esta tese tem como objetivo principal fornecer uma contribuição ao cenário de branas. Para isso propomos dois cenários distintos que estendem modelos encontrados na literatura. A razão pela qual o cenário de branas tem sido bastante explorado nos últimos anos, deve-se principalmente ao fato de que este ramo está intimamente relacionado a questões fundamentais em física de partículas, tais como: o problema da hierarquia, a assimetria matéria e anti-matéria e o problema da constante cosmológica. Uma vez que a relação entre a Física e a geometria do espaço ambiente multidimensional no qual nosso mundo está imerso tem uma relação muito forte, torna-se de fundamental interesse verificar as possíveis influências que essa geometria pode ter sobre as propriedades físicas de nossa brana. Em princípio, não sabemos como os mais diversos campos do modelo padrão serão afetados por mudanças geométricas do espaço ambiente. O campo utilizado como objeto de estudo é o vetorial de calibre, uma vez que este não é originalmente localizado no modelo de Randall-Sundrum descrito por sua ação usual. Como primeira proposta, analisamos o comportamento do campo vetorial quando inserido em um espaço ambiente de seis dimensões em que a variedade transversa é uma seção do conifold resolvido. Este cenário representa uma extensão do cenário de branas denominado tipo corda e possui como principal característica a presença de um fator geométrico, o parâmetro de resolução, que pode ser utilizado para regular a singularidade na origem, os modos de massa e o potencial associado aos modos de Kaluza-Klein. A segunda proposta baseia-se numa solução estacionária do fluxo de Ricci conhecida como sóliton charuto de Hamilton. Este cenário, além de promover a suavização das soluções, satisfaz todas as condições de regularidade para a métrica na origem. Representando assim, uma solução interna e externa ao defeito do tipo corda.
|
2 |
Sobre modificaÃÃes na estrutura geomÃtrica em cenÃrios de branas. / On the modifications of the geometric structure of the Braneworlds scenariosJose Euclides Gomes da Silva 16 October 2013 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / This thesis presents our proposals for new braneworlds models. Some of the main open
issues in high energy physics have interesting solutions assuming the space-time has more
than four dimensions. For instance, the hierarchy problem between the eletroweak and
the Planck scales, and the origin of the cosmological constant, find some solutions in the
brane scenarios. Since these models are rather sensible on the geometrical structure of the
multidimensional space time where the brane is embedded, our main goal is to analyze
how the geometrical and physical properties of the braneworld and of fields living on it
evolve under a geometrical flow in the transverse manifold. The first step was propose
an smoothed string-like braneworld with a transverse resolved conifold. The resolution
parameter changes the width of the well and the high of the barrier of the Kaluza-Klein
modes. Further, the source of this warped solution has different phases depending on the
resolution parameter. The massless modes for the scalar, gauge and spinor fields are only
well-behaved on the brane for non singular configurations. Another smooth geometrical
flow studied was the so-called Ricci flow. This flux posses diffeomorphic invariant solutions
called Ricci solitons which are extremals of the energy and entropy functionals. An
important two-dimensional Ricci soliton with axial symmetry is the cigar soliton. A warped
product between a 3-brane and the cigar soliton turns to be an interior and exterior
string-like solution satisfying the dominant energy condition and that supports a massless
gravitational mode trapped to the brane. The last geometric modification proposed
was the locally Lorentz symmetry violation through a Finsler geometry approach. This
anisotropic differential geometry has been intensely studied in last years. We have chosen
the so-called bipartite space where the length of the events is measure using the metric
and another symmetric tensor called bipartite tensor. We have shown the bipartite space
deforms the causal surface to an elliptic cone and provides an anisotropy into the inertia
of a particle. By means of an extended Einstein-Hilbert action we have shown an analogy
between the bipartite space and the bumblebee and bipartite models which are effective
Lorentz violating models in curved space times. / A presente tese apresenta nossas propostas de estensÃes dos modelos de mundo Branas. Alguns dos principais problemas em aberto em fÃsica de partÃculas, como o problema da hieraquia entre as escalas de Planck e eletrofraca, e da cosmologia como a origem da matÃria escura e o valor da constante cosmolÃgica, encontram soluÃÃes nos cenÃrios de branas. Uma vez que tais modelos sÃo extremamente sensÃveis à estrutura geomÃtrica do espaÃo-tempo ambiente multidimensional no qual a brana està imersa, noss ideia bÃsica à analisar como as propriedades da brana e dos campos que vivem no seu entorno mudam quando alteramos a estrutura geomÃtrica do espaÃo ambiente. Nosso primeiro passo foi uma estensÃo do cenÃrio de de brana tipo-corda em seis dimensÃes onde a variedade transversa à uma seÃÃo do cone resolvido. O parÃmetro de resoluÃÃo do cone, que controla a singularidade na origem, tambÃm altera a largura dos modos sem massa de um campo escalar e do potencial confinante dos modos Kaluza-Klein. TambÃm analisamos as condiÃÃes de energia da fonte que passa por diferentes fases durante o fluxo de resoluÃÃo. Estudamos ainda como este fluxo modifica as propriedades dos campos vetoriais e espinoriais neste cenÃrio. Em seguida, propusemos um novo fluxo geomÃtrico para a variedade transversa. O chamado fluxo de Ricci possui soluÃÃes invariantes por difeomorfismos chamadas sÃlitons de Ricci. Tais soluÃÃes tÃm a propriedade de extremizar grandezas durante esse fluxo, como os funcionais energia e entropia. Uma soluÃÃo particularmente importante e estacionÃria deste fluxo à o chamado sÃliton charuto de Hamilton que possui simetria axial. Definimos uma variedade produto nÃo-fatorizÃvel entre uma 3-brana e um sÃliton de Hamilton resultando em uma soluÃÃo tipo-corda regular que satisfaz a condiÃÃo de energia dominante e tem um modo gravitacional nÃo massivo localizado. Outra modificaÃÃo geomÃtrica proposta foi a ViolaÃÃo da simetria de Lorentz atravÃs da introduÃÃo de uma estrutura mÃtrica localmente anisotrÃpica, a chamada geometria de Finsler. Tal abordagem tem sido objeto recente de vÃrios estudos. Escolhemos uma estrutura finsleriana recentemente proposta, chamada bipartite, onde o comprimento dos eventos à calculado nÃo somente com a mÃtrica Lorentziana mas tambÃm com uma outra forma bilinear simÃtrica. O cone de luz desta geometria à deformado para um cone elÃptico cujas inclinaÃÃes das geratrizes dependem dos autovalores do tensor bipartite. Outra propriedade deste espaÃo-tempo à a de modificar a relaÃÃo entre o 4-momentum e a 4-velocidade gerando um tensor de inÃrcia. AtravÃs de uma aÃÃo de Einstein-Hilbert finsleriana em um limite de baixa dependÃncia direcional, encontramos uma analogia entre essa geometria e os modelos bumblebee e aether, que descrevem efetivamente a quebra da simetria de Lorentz em espaÃos curvos.
|
3 |
Efeitos de Fluxo GeomÃtrico sobre o Campo Vetorial de Calibre em Seis DimensÃesFrancisco Wagner Vasconcelos da Costa 21 January 2015 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Esta tese tem como objetivo principal fornecer uma contribuiÃÃo ao cenÃrio de branas. Para isso propomos dois cenÃrios distintos que estendem modelos encontrados na literatura. A razÃo pela qual o cenÃrio de branas tem sido bastante explorado nos Ãltimos anos, deve-se principalmente ao fato de que este ramo està intimamente relacionado a questÃes fundamentais em fÃsica de partÃculas, tais como: o problema da hierarquia, a assimetria matÃria e anti-matÃria e o problema da constante cosmolÃgica. Uma vez que a relaÃÃo entre a FÃsica e a geometria do espaÃo ambiente multidimensional no qual nosso mundo està imerso tem uma relaÃÃo muito forte, torna-se de fundamental interesse verificar as possÃveis influÃncias que essa geometria pode ter sobre as propriedades fÃsicas de nossa brana. Em princÃpio, nÃo sabemos como os mais diversos campos do modelo padrÃo serÃo afetados por mudanÃas geomÃtricas do espaÃo ambiente. O campo utilizado como objeto de estudo à o vetorial de calibre, uma vez que este nÃo à originalmente localizado no modelo de Randall-Sundrum descrito por sua aÃÃo usual. Como primeira proposta, analisamos o comportamento do campo vetorial quando inserido em um espaÃo ambiente de seis dimensÃes em que a variedade transversa à uma seÃÃo do conifold resolvido. Este cenÃrio representa uma extensÃo do cenÃrio de branas denominado tipo corda e possui como principal caracterÃstica a presenÃa de um fator geomÃtrico, o parÃmetro de resoluÃÃo, que pode ser utilizado para regular a singularidade na origem, os modos de massa e o potencial associado aos modos de Kaluza-Klein. A segunda proposta baseia-se numa soluÃÃo estacionÃria do fluxo de Ricci conhecida como sÃliton charuto de Hamilton. Este cenÃrio, alÃm de promover a suavizaÃÃo das soluÃÃes, satisfaz todas as condiÃÃes de regularidade para a mÃtrica na origem. Representando assim, uma soluÃÃo interna e externa ao defeito do tipo corda.
|
4 |
Sobre modificações na estrutura geométrica em cenários de branas / On the modifications of the geometric structure of the Braneworlds scenariosSilva, José Euclides Gomes da January 2013 (has links)
SILVA, José Euclides Gomes da. Sobre modificações na estrutura geométrica em cenários de branas. 2013. 130 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2014-05-16T21:35:18Z
No. of bitstreams: 1
2013_tese_jegsilva.pdf: 836100 bytes, checksum: c4765585f192ce0d02aa423186d47ae3 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-05-16T21:38:09Z (GMT) No. of bitstreams: 1
2013_tese_jegsilva.pdf: 836100 bytes, checksum: c4765585f192ce0d02aa423186d47ae3 (MD5) / Made available in DSpace on 2014-05-16T21:38:10Z (GMT). No. of bitstreams: 1
2013_tese_jegsilva.pdf: 836100 bytes, checksum: c4765585f192ce0d02aa423186d47ae3 (MD5)
Previous issue date: 2013 / This thesis presents our proposals for new braneworlds models. Some of the main open issues in high energy physics have interesting solutions assuming the space-time has more than four dimensions. For instance, the hierarchy problem between the eletroweak and the Planck scales, and the origin of the cosmological constant, find some solutions in the brane scenarios. Since these models are rather sensible on the geometrical structure of the multidimensional space time where the brane is embedded, our main goal is to analyze how the geometrical and physical properties of the braneworld and of fields living on it evolve under a geometrical flow in the transverse manifold. The first step was propose an smoothed string-like braneworld with a transverse resolved conifold. The resolution parameter changes the width of the well and the high of the barrier of the Kaluza-Klein modes. Further, the source of this warped solution has different phases depending on the resolution parameter. The massless modes for the scalar, gauge and spinor fields are only well-behaved on the brane for non singular configurations. Another smooth geometrical flow studied was the so-called Ricci flow. This flux posses diffeomorphic invariant solutions called Ricci solitons which are extremals of the energy and entropy functionals. An important two-dimensional Ricci soliton with axial symmetry is the cigar soliton. A warped product between a 3-brane and the cigar soliton turns to be an interior and exterior string-like solution satisfying the dominant energy condition and that supports a massless gravitational mode trapped to the brane. The last geometric modification proposed was the locally Lorentz symmetry violation through a Finsler geometry approach. This anisotropic differential geometry has been intensely studied in last years. We have chosen the so-called bipartite space where the length of the events is measure using the metric and another symmetric tensor called bipartite tensor. We have shown the bipartite space deforms the causal surface to an elliptic cone and provides an anisotropy into the inertia of a particle. By means of an extended Einstein-Hilbert action we have shown an analogy between the bipartite space and the bumblebee and bipartite models which are effective Lorentz violating models in curved space times. / A presente tese apresenta nossas propostas de estensões dos modelos de mundo Branas. Alguns dos principais problemas em aberto em física de partículas, como o problema da hieraquia entre as escalas de Planck e eletrofraca, e da cosmologia como a origem da matéria escura e o valor da constante cosmológica, encontram soluções nos cenários de branas. Uma vez que tais modelos são extremamente sensíveis à estrutura geométrica do espaço-tempo ambiente multidimensional no qual a brana está imersa, noss ideia básica é analisar como as propriedades da brana e dos campos que vivem no seu entorno mudam quando alteramos a estrutura geométrica do espaço ambiente. Nosso primeiro passo foi uma estensão do cenário de de brana tipo-corda em seis dimensões onde a variedade transversa é uma seção do cone resolvido. O parâmetro de resolução do cone, que controla a singularidade na origem, também altera a largura dos modos sem massa de um campo escalar e do potencial confinante dos modos Kaluza-Klein. Também analisamos as condições de energia da fonte que passa por diferentes fases durante o fluxo de resolução. Estudamos ainda como este fluxo modifica as propriedades dos campos vetoriais e espinoriais neste cenário. Em seguida, propusemos um novo fluxo geométrico para a variedade transversa. O chamado fluxo de Ricci possui soluções invariantes por difeomorfismos chamadas sólitons de Ricci. Tais soluções têm a propriedade de extremizar grandezas durante esse fluxo, como os funcionais energia e entropia. Uma solução particularmente importante e estacionária deste fluxo é o chamado sóliton charuto de Hamilton que possui simetria axial. Definimos uma variedade produto não-fatorizável entre uma 3-brana e um sóliton de Hamilton resultando em uma solução tipo-corda regular que satisfaz a condição de energia dominante e tem um modo gravitacional não massivo localizado. Outra modificação geométrica proposta foi a Violação da simetria de Lorentz através da introdução de uma estrutura métrica localmente anisotrópica, a chamada geometria de Finsler. Tal abordagem tem sido objeto recente de vários estudos. Escolhemos uma estrutura finsleriana recentemente proposta, chamada bipartite, onde o comprimento dos eventos é calculado não somente com a métrica Lorentziana mas também com uma outra forma bilinear simétrica. O cone de luz desta geometria é deformado para um cone elíptico cujas inclinações das geratrizes dependem dos autovalores do tensor bipartite. Outra propriedade deste espaço-tempo é a de modificar a relação entre o 4-momentum e a 4-velocidade gerando um tensor de inércia. Através de uma ação de Einstein-Hilbert finsleriana em um limite de baixa dependência direcional, encontramos uma analogia entre essa geometria e os modelos bumblebee e aether, que descrevem efetivamente a quebra da simetria de Lorentz em espaços curvos.
|
Page generated in 0.0697 seconds