Spelling suggestions: "subject:"finsler eometry"" "subject:"finsler ceometry""
1 |
Finsler Geometry And Its Applications ToelectromagnetismCagil, Ayse 01 January 2003 (has links) (PDF)
In this thesis Finsler geometry is extensively reviewed. The geometrization of
fields by a Finslerian approach is considered. Also unification of electrodynamics
and gravitation with suitable Finslerian metrics is examined.
|
2 |
Shortest paths and geodesics in metric spacesPersson, Nicklas January 2013 (has links)
This thesis is divided into three part, the first part concerns metric spaces and specically length spaces where the existence of shortest path between points is the main focus. In the second part, an example of a length space, the Riemannian geometry will be given. Here both a classical approach to Riemannian geometry will be given together with specic results when considered as a metric space. In the third part, the Finsler geometry will be examined both with a classical approach and trying to deal with it as a metric space.
|
3 |
Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamicsRivera Hernández, Sergio January 2012 (has links)
Which tensor fields G on a smooth manifold M can serve as a spacetime structure? In the first part of this thesis, it is found that only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry predictive, interpretable and quantizable matter dynamics. The obvious dependence of this characterization of admissible tensorial spacetime geometries on specific matter is not a weakness, but rather presents an insight: it was Maxwell theory that justified Einstein to promote Lorentzian manifolds to the status of a spacetime geometry. Any matter that does not mimick the structure of Maxwell theory, will force us to choose another geometry on which the matter dynamics of interest are predictive, interpretable and quantizable.
These three physical conditions on matter impose three corresponding algebraic conditions on the totally symmetric contravariant coefficient tensor field P that determines the principal symbol of the matter field equations in terms of the geometric tensor G: the tensor field P must be hyperbolic, time-orientable and energy-distinguishing. Remarkably, these physically necessary conditions on the geometry are mathematically already sufficient to realize all kinematical constructions familiar from Lorentzian geometry, for precisely the same structural reasons. This we were able to show employing a subtle interplay of convex analysis, the theory of partial differential equations and real algebraic geometry.
In the second part of this thesis, we then explore general properties of any hyperbolic, time-orientable and energy-distinguishing tensorial geometry. Physically most important are the construction of freely falling non-rotating laboratories, the appearance of admissible modified dispersion relations to particular observers, and the identification of a mechanism that explains why massive particles that are faster than some massless particles can radiate off energy until they are slower than all massless particles in any hyperbolic, time-orientable and energy-distinguishing geometry.
In the third part of the thesis, we explore how tensorial spacetime geometries fare when one wants to quantize particles and fields on them. This study is motivated, in part, in order to provide the tools to calculate the rate at which superluminal particles radiate off energy to become infraluminal, as explained above. Remarkably, it is again the three geometric conditions of hyperbolicity, time-orientability and energy-distinguishability that allow the quantization of general linear electrodynamics on an area metric spacetime and the quantization of massive point particles obeying any admissible dispersion relation. We explore the issue of field equations of all possible derivative order in rather systematic fashion, and prove a practically most useful theorem that determines Dirac algebras allowing the reduction of derivative orders.
The final part of the thesis presents the sketch of a truly remarkable result that was obtained building on the work of the present thesis. Particularly based on the subtle duality maps between momenta and velocities in general tensorial spacetimes, it could be shown that gravitational dynamics for hyperbolic, time-orientable and energy distinguishable geometries need not be postulated, but the formidable physical problem of their construction can be reduced to a mere mathematical task: the solution of a system of homogeneous linear partial differential equations. This far-reaching physical result on modified gravity theories is a direct, but difficult to derive, outcome of the findings in the present thesis.
Throughout the thesis, the abstract theory is illustrated through instructive examples. / Welche Tensorfelder G auf einer glatten Mannigfaltigkeit M können eine Raumzeit-Geometrie beschreiben? Im ersten Teil dieser Dissertation wird es gezeigt, dass nur stark eingeschränkte Klassen von Tensorfeldern eine Raumzeit-Geometrie darstellen können, nämlich Tensorfelder, die eine prädiktive, interpretierbare und quantisierbare Dynamik für Materiefelder ermöglichen. Die offensichtliche Abhängigkeit dieser Charakterisierung
erlaubter tensorieller Raumzeiten von einer spezifischen Materiefelder-Dynamik ist keine Schwäche der Theorie, sondern ist letztlich genau das Prinzip, das die üblicherweise betrachteten Lorentzschen Mannigfaltigkeiten auszeichnet: diese stellen die metrische Geometrie dar, welche die Maxwellsche Elektrodynamik prädiktiv, interpretierbar und quantisierbar macht. Materiefeld-Dynamiken, welche die kausale Struktur von Maxwell-Elektrodynamik nicht respektieren, zwingen uns, eine andere Geometrie auszuwählen, auf der die Materiefelder-Dynamik aber immer noch prädiktiv, interpretierbar und quantisierbar sein muss.
Diesen drei Voraussetzungen an die Materie entsprechen drei algebraische Voraussetzungen an das total symmetrische kontravariante Tensorfeld P, welches das Prinzipalpolynom der Materiefeldgleichungen (ausgedrückt durch das grundlegende Tensorfeld G) bestimmt: das Tensorfeld P muss hyperbolisch, zeitorientierbar und energie-differenzierend sein. Diese drei notwendigen Bedingungen an die Geometrie genügen, um alle aus der Lorentzschen Geometrie bekannten kinematischen Konstruktionen zu realisieren. Dies zeigen wir im ersten Teil der vorliegenden Arbeit unter Verwendung eines teilweise recht subtilen Wechselspiels zwischen konvexer Analysis, der Theorie partieller Differentialgleichungen und reeller algebraischer Geometrie.
Im zweiten Teil dieser Dissertation erforschen wir allgemeine Eigenschaften aller solcher hyperbolischen, zeit-orientierbaren und energie-differenzierenden Geometrien. Physikalisch wichtig sind der Aufbau von frei fallenden und nicht rotierenden Laboratorien, das Auftreten modifizierter Energie-Impuls-Beziehungen und die Identifizierung eines Mechanismus, der erklärt, warum massive Teilchen, die sich schneller als einige masselosse Teilchen bewegen, Energie abstrahlen können, aber nur bis sie sich langsamer als alle masselossen Teilchen bewegen.
Im dritten Teil der Dissertation ergründen wir die Quantisierung von Teilchen und Feldern auf tensoriellen Raumzeit-Geometrien, die die obigen physikalischen Bedingungen erfüllen. Eine wichtige Motivation dieser Untersuchung ist es, Techniken zur Berechnung der Zerfallsrate von Teilchen zu berechnen, die sich schneller als langsame masselose Teilchen bewegen. Wir finden, dass es wiederum die drei zuvor im klassischen Kontext identifizierten Voraussetzungen (der Hyperbolizität, Zeit-Orientierbarkeit und Energie-Differenzierbarkeit)
sind, welche die Quantisierung allgemeiner linearer Elektrodynamik auf einer flächenmetrischen Raumzeit und die Quantizierung massiver Teilchen, die eine physikalische Energie-Impuls-Beziehung respektieren, erlauben. Wir erkunden auch systematisch, wie man Feldgleichungen aller Ableitungsordnungen generieren kann und beweisen einen Satz, der verallgemeinerte Dirac-Algebren bestimmt und die damit Reduzierung des Ableitungsgrades einer physikalischen Materiefeldgleichung ermöglicht.
Der letzte Teil der vorliegenden Schrift skizziert ein bemerkenswertes Ergebnis, das mit den in dieser Dissertation dargestellten Techniken erzielt wurde. Insbesondere aufgrund der hier identifizierten dualen Abbildungen zwischen Teilchenimpulsen und -geschwindigkeiten auf allgemeinen tensoriellen Raumzeiten war es möglich zu zeigen, dass man die Gravitationsdynamik für hyperbolische, zeit-orientierbare und energie-differenzierende Geometrien nicht postulieren muss, sondern dass sich das Problem ihrer Konstruktion auf eine rein mathematische Aufgabe reduziert: die Lösung eines homogenen linearen Differentialgleichungssystems. Dieses weitreichende Ergebnis über modifizierte Gravitationstheorien ist eine direkte (aber schwer herzuleitende) Folgerung der Forschungsergebnisse dieser Dissertation.
Die abstrakte Theorie dieser Doktorarbeit wird durch mehrere instruktive Beispiele illustriert.
|
4 |
Sobre modificações na estrutura geométrica em cenários de branas / On the modifications of the geometric structure of the Braneworlds scenariosSilva, José Euclides Gomes da January 2013 (has links)
SILVA, José Euclides Gomes da. Sobre modificações na estrutura geométrica em cenários de branas. 2013. 130 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2014-05-16T21:35:18Z
No. of bitstreams: 1
2013_tese_jegsilva.pdf: 836100 bytes, checksum: c4765585f192ce0d02aa423186d47ae3 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-05-16T21:38:09Z (GMT) No. of bitstreams: 1
2013_tese_jegsilva.pdf: 836100 bytes, checksum: c4765585f192ce0d02aa423186d47ae3 (MD5) / Made available in DSpace on 2014-05-16T21:38:10Z (GMT). No. of bitstreams: 1
2013_tese_jegsilva.pdf: 836100 bytes, checksum: c4765585f192ce0d02aa423186d47ae3 (MD5)
Previous issue date: 2013 / This thesis presents our proposals for new braneworlds models. Some of the main open issues in high energy physics have interesting solutions assuming the space-time has more than four dimensions. For instance, the hierarchy problem between the eletroweak and the Planck scales, and the origin of the cosmological constant, find some solutions in the brane scenarios. Since these models are rather sensible on the geometrical structure of the multidimensional space time where the brane is embedded, our main goal is to analyze how the geometrical and physical properties of the braneworld and of fields living on it evolve under a geometrical flow in the transverse manifold. The first step was propose an smoothed string-like braneworld with a transverse resolved conifold. The resolution parameter changes the width of the well and the high of the barrier of the Kaluza-Klein modes. Further, the source of this warped solution has different phases depending on the resolution parameter. The massless modes for the scalar, gauge and spinor fields are only well-behaved on the brane for non singular configurations. Another smooth geometrical flow studied was the so-called Ricci flow. This flux posses diffeomorphic invariant solutions called Ricci solitons which are extremals of the energy and entropy functionals. An important two-dimensional Ricci soliton with axial symmetry is the cigar soliton. A warped product between a 3-brane and the cigar soliton turns to be an interior and exterior string-like solution satisfying the dominant energy condition and that supports a massless gravitational mode trapped to the brane. The last geometric modification proposed was the locally Lorentz symmetry violation through a Finsler geometry approach. This anisotropic differential geometry has been intensely studied in last years. We have chosen the so-called bipartite space where the length of the events is measure using the metric and another symmetric tensor called bipartite tensor. We have shown the bipartite space deforms the causal surface to an elliptic cone and provides an anisotropy into the inertia of a particle. By means of an extended Einstein-Hilbert action we have shown an analogy between the bipartite space and the bumblebee and bipartite models which are effective Lorentz violating models in curved space times. / A presente tese apresenta nossas propostas de estensões dos modelos de mundo Branas. Alguns dos principais problemas em aberto em física de partículas, como o problema da hieraquia entre as escalas de Planck e eletrofraca, e da cosmologia como a origem da matéria escura e o valor da constante cosmológica, encontram soluções nos cenários de branas. Uma vez que tais modelos são extremamente sensíveis à estrutura geométrica do espaço-tempo ambiente multidimensional no qual a brana está imersa, noss ideia básica é analisar como as propriedades da brana e dos campos que vivem no seu entorno mudam quando alteramos a estrutura geométrica do espaço ambiente. Nosso primeiro passo foi uma estensão do cenário de de brana tipo-corda em seis dimensões onde a variedade transversa é uma seção do cone resolvido. O parâmetro de resolução do cone, que controla a singularidade na origem, também altera a largura dos modos sem massa de um campo escalar e do potencial confinante dos modos Kaluza-Klein. Também analisamos as condições de energia da fonte que passa por diferentes fases durante o fluxo de resolução. Estudamos ainda como este fluxo modifica as propriedades dos campos vetoriais e espinoriais neste cenário. Em seguida, propusemos um novo fluxo geométrico para a variedade transversa. O chamado fluxo de Ricci possui soluções invariantes por difeomorfismos chamadas sólitons de Ricci. Tais soluções têm a propriedade de extremizar grandezas durante esse fluxo, como os funcionais energia e entropia. Uma solução particularmente importante e estacionária deste fluxo é o chamado sóliton charuto de Hamilton que possui simetria axial. Definimos uma variedade produto não-fatorizável entre uma 3-brana e um sóliton de Hamilton resultando em uma solução tipo-corda regular que satisfaz a condição de energia dominante e tem um modo gravitacional não massivo localizado. Outra modificação geométrica proposta foi a Violação da simetria de Lorentz através da introdução de uma estrutura métrica localmente anisotrópica, a chamada geometria de Finsler. Tal abordagem tem sido objeto recente de vários estudos. Escolhemos uma estrutura finsleriana recentemente proposta, chamada bipartite, onde o comprimento dos eventos é calculado não somente com a métrica Lorentziana mas também com uma outra forma bilinear simétrica. O cone de luz desta geometria é deformado para um cone elíptico cujas inclinações das geratrizes dependem dos autovalores do tensor bipartite. Outra propriedade deste espaço-tempo é a de modificar a relação entre o 4-momentum e a 4-velocidade gerando um tensor de inércia. Através de uma ação de Einstein-Hilbert finsleriana em um limite de baixa dependência direcional, encontramos uma analogia entre essa geometria e os modelos bumblebee e aether, que descrevem efetivamente a quebra da simetria de Lorentz em espaços curvos.
|
5 |
[en] DESTRUCTION OF INVARIANT GRAPHS BY Cˆ{1,\BETA} PERTURBATIONS / [pt] DESTRUIÇÃO DE GRÁFICOS INVARIANTES POR PERTURBAÇÕES Cˆ{1,\BETA}23 December 2021 (has links)
[pt] Segundo a teoria desenvolvida por Kolmogorov, Arnold e Moser na
década de sessenta, a grande maioria dos toros invariantes persistem após
uma perturbação C3 de um Hamiltoniano integrável. Uma pergunta natural é se perturbações em topologias Ck, para k < 3, ainda preservam tais toros. Bangert mostrou que a situação é a oposta na topologia C1 : arbitrariamente próximo de uma métrica Riemanniana plana no toro existem métricas sem nenhum toro invariante. Ruggiero estendeu esses resultados para Lagrangeanos mecânicos no toro e mostrou que, no caso de métricas Riemannianas, esse fenômeno é C1 genérico. Neste trabalho, mostramos que, dado ǫ > 0, E 2 R e um Hamiltoniano de Tonelli reversível H : TT2 -> R, existe β E (0, 1) e uma ǫ perturbação H0 de H tal que H0 não possui gráficos contínuos invariantes. Para tal, construimos explicitamente uma métrica Finsler, sem nenhum campo contínuo de minimizantes, através de um estudo analítico do operador de Jacobi. / [en] According to the theory developed by Kolmogorov, Arnold and Moser in the sixties, the majority of invariant tori persists under a C3 perturbation of a integrable Hamiltonian. A natural question is if a perturbation in the Ck topology, k < 3, still preserves such tori. Bangert showed that, in the C1 topology, what happens is the opposite: there are metrics with no invariant torus arbitrarily close to any given Riemannian metric. Ruggiero extended these results to mechanical Lagrangians in the torus and showed that for Riemannian metrics this phenomenon is C1 generic. In this work, we show that, given e > 0, e 2 R and a reversible Tonelli Hamiltonian H : TT2 -> R, there exists β E (0, 1) and an ǫ perturbation H0 of H in the C1,β topology such that H0 has no continuous invariant graphs. The result is achieved by explicitly exhibiting a Finsler metric, without any continuous field of minimizers, constructed after an analytic study of the Jacobi operator.
|
Page generated in 0.06 seconds