• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 252
  • 51
  • 28
  • 20
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 442
  • 89
  • 77
  • 76
  • 63
  • 46
  • 43
  • 39
  • 37
  • 36
  • 34
  • 27
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Asymmetric Conjugate Addition of Arylboronates to α,β-unsaturated Enones Catalyzed by Substituted Binaphthols

Turner, Heather January 2009 (has links)
Conjugate addition reactions are one of the most widely used carbon-carbon bond forming reactions in organic synthesis. This reaction can form a chiral center and can be used for the synthesis of structurally complex compounds. Until now it has been necessary to use a chiral heavy metal catalyst in order to carry out asymmetric addition of aromatic groups to α,b-unsaturated enones via conjugate addition. Recently we have been successful in achieving the same task using an arylboronate as well as a catalytic amount of a chiral substituted binaphthol (BINOL). Using this reaction method great yields and enantioselectivities were achieved when diethyl phenylboronate was added to various enones and when various diethyl arylboronates were added to chalcone. This reaction is exciting because it eliminates the chance of having trace amounts of heavy metals in the final product, which is advantageous in such areas as the pharmaceutical industry.
22

Asymmetric Conjugate Addition of Arylboronates to α,β-unsaturated Enones Catalyzed by Substituted Binaphthols

Turner, Heather January 2009 (has links)
Conjugate addition reactions are one of the most widely used carbon-carbon bond forming reactions in organic synthesis. This reaction can form a chiral center and can be used for the synthesis of structurally complex compounds. Until now it has been necessary to use a chiral heavy metal catalyst in order to carry out asymmetric addition of aromatic groups to α,b-unsaturated enones via conjugate addition. Recently we have been successful in achieving the same task using an arylboronate as well as a catalytic amount of a chiral substituted binaphthol (BINOL). Using this reaction method great yields and enantioselectivities were achieved when diethyl phenylboronate was added to various enones and when various diethyl arylboronates were added to chalcone. This reaction is exciting because it eliminates the chance of having trace amounts of heavy metals in the final product, which is advantageous in such areas as the pharmaceutical industry.
23

A Study on the Tooth Geometries of Gear Sets with Skew Axes

Yang, Yu-Feng 25 July 2001 (has links)
Presently, there are a lot of applications of gear sets with skew axes, some of them, especially worm gear sets and hypoid gear sets, are widely used. Take hypoid gear as example, gear sets produced by different gear factories can¡¦t fit to each other. Due to the lacking in common properties among different systems, it is disadvantageous to integrated application of development of gear researches. Therefore, a common mathematical constructive model is necessary to be established. The main content of this thesis is to construct the mathematical parametric model and the partial differential constraint equation according to the rigid-body transformation theory and General Theorem of Conjugate Surfaces. After finding out the solution from the partial differential constraint equation, a new line-contacted type of tooth profile of gear sets with skew axes, quality analyses to the parameters of gear profile rendered are proceeded. Finally, utilize the software of motion simulation to simulate the operating situation of the linear contacted type of gear sets with skew axes constructed, and supply the demonstration of the theory of tooth profile of gear sets and properties of gear sets.
24

Experimental and computational investigation of film cooling on a large scale C3X turbine vane including conjugate effects

Dyson, Thomas Earl 30 January 2013 (has links)
This study focused on the improvement of film cooling for gas turbine vanes using both computational and experimental techniques. The experimental component used a matched Biot number model to measure scaled surface temperature (overall effectiveness) distributions representative of engine conditions for two new configurations. One configuration consisted of a single row of holes on the pressure surface while the other used numerous film cooling holes over the entire vane including a showerhead. Both configurations used internal impingement cooling representative of a 1st vane. Adiabatic effectiveness was also measured. No previous studies had shown the effect of injection on the mean and fluctuating velocity profiles for the suction surface, so measurements were made at two locations immediately upstream of film cooling holes from the fully cooled cooling configuration. Different blowing conditions were evaluated. Computational tools are increasingly important in the design of advanced gas turbine engines and validation of these tools is required prior to integration into the design process. Two film cooling configurations were simulated and compared to past experimental work. Data from matched Biot number experiments was used to validate the overall effectiveness from conjugate simulations in addition to adiabatic effectiveness. A simulation of a single row of cooling holes on the suction side also gave additional insight into the interaction of film cooling jets with the thermal boundary layer. A showerhead configuration was also simulated. The final portion of this study sought to evaluate the performance of six RANS models (standard, realizable, and renormalization group k-ε; standard k-ω; k-ω SST; and Transition SST) with respect to the prediction of thermal boundary layers. The turbulent Prandtl number was varied to test a simple method for improvement of the thermal boundary layer predictions. / text
25

A Diagnostic Target Against Clostridium bolteae, Towards a Multivalent Vaccine for Autism-Related Gastric Bacteria

Pequegnat, Brittany 16 August 2013 (has links)
Constipation and diarrhea are common in autistic patients. Antibiotic treatment against bacteria appears to partially alleviate autistic-related symptoms. The bacterium Clostridium bolteae has been shown to be overabundant in the intestinal tract of autistic children suffering from gastric intestinal ailments, and as such is an organism that could potentially aggravate gastrointestinal symptoms. Investigation of the cell-wall polysaccharides of C. bolteae was employed in order to evaluate their structure and immunogenicity. Exploration revealed that C. bolteae produces a conserved specific capsular polysaccharide comprised of rhamnose and mannose units: [->3)-α-D-Manp-(1->4)-β-D-Rhap-(1->], which is immunogenic in rabbits. This is the first described immunogen of C. bolteae and indicates the prospect of using this polysaccharide as a vaccine to reduce or prevent colonization of the intestinal tract in autistic patients, and as a diagnostic marker for rapid detection. This diagnostic target can be used in a multivalent vaccine, which may potentially include Sutterella and Desulfovibrio.
26

Příprava modifikovaných ligandů mju-opioidních receptorů / Preparation of modified ligands of mu-opioid receptors

Hadzima, Martin January 2018 (has links)
This diploma thesis deals with preparation of modified ligands of mu, delta and kappa opioid receptors, following up on the author's bachelor's thesis.1 The main goal of the submitted thesis is ligand tethering at an appropriate position using oligoethylene glycol linkers, to enable their use in the innovative iBodies concept.2 Ligands chosen for modifications were: naltrexone (μ-opioid receptor), naltrindole (δ-opioid receptor) and nalfurafine (κ-opioid receptor). Naltrexone was modified, according to the bachelor's thesis results, at the C-6 position with linker attachment via ether and amide. At the same time, the influence of the configuration at the newly formed C-6 stereogenic center on biological activity was studied. In case of naltrindole, access through indole nitrogen was chosen based on the information in literature.3-5 Nalfurafine was modified on the furane fragment. Series of fluorescently labeled ligands were prepared. Attachment of the fluorescent tag allowed us to study the affinity and selectivity of these modified ligands. Based on the results, ligands for development of DIANA method and for preparation of synthetic iBodies were synthesised.6 Key words: naltrexone, receptor, conjugate, opioid receptor 1 M. Hadzima. Fluorescenčně značené ligandy μ-opioidních receptorů, 2016. 2 P....
27

Development of computational methods for conjugate heat transfer analysis in complex industrial applications

Uapipatanakul, Sakchai January 2012 (has links)
Conjugate heat transfer is a crucial issue in a number of turbulent engineering fluidflow applications, particularly in nuclear engineering and heat exchanger equipment. Temperature fluctuations in the near-wall turbulent fluid lead to similar fluctuationsin the temperature of the solid wall, and these fluctuations in the solid cause thermalstress in the material which may lead to fatigue and finally damage. In the present study, the Reynolds Average Navier-Stokes (RANS) modelling approachhas been adopted, with four equation k−ε−θ2−εθ eddy viscosity based modelsemployed to account for the turbulence in the fluid region. Transport equations forthe mean temperature, temperature variance, θ2, and its dissipation rate, εθ, have beensimultaneously solved across the solid region, with suitable matching conditions forthe thermal fields at the fluid/solid interface. The study has started by examining the case of fully developed channel flow withheat transfer through a thick wall, for which Tiselj et al. [2001b] provide DNS dataat a range of thermal activity ratios (essentially a ratio of the fluid and solid thermalmaterial properties). Initial simulations were performed with the existing Hanjali´cet al. [1996] four-equation model, extended across the solid region as described above. However, this model was found not to produce the correct sensitivity to thermal activityratio of the near wall θ2 values in the fluid, or the decay rate of θ2 across the solid wall. Therefore, a number of model refinements are proposed in order to improve predictionsin both fluid and solid regions over a range of thermal activity ratios. These refinementsare based on elements from a three-equation non-linear EVM designed to bring aboutbetter profiles of the variables k, ε, θ2 and εθ near the wall , and their inclusion is shownto produce a good matching with the DNS data of Tiselj et al. [2001b].Thereafter, a further, more complex test case has been investigated, namely an opposedwall jet flow, in which a hot wall jet flows vertically downward into an ascendingcold flow. As in the channel flow case, the thermal field is also solved across the solidwalls. The modified model results are compared with results from the Hanjali´c modeland LES and experimental data of Addad et al. [2004] and He et al. [2002] respectively. In this test case, the modified model presents generally good agreement with the LESand experimental data in the dynamic flow field, particularly the penetration point ofthe jet flow. In the thermal field, the modified model also shows improvements in the θ2predictions, particularly in the decay of the θ2 across the wall, which is consistent withthe behaviour found in the simple channel flow case. Although the modified model hasshown significant improvements in the conjugate heat transfer predictions, in some instancesit was difficult to obtain fully-converged steady state numerical results. Thusthe particular investigation with the inlet jet location shows non-convergence numericalresults in this steady state assumption. Thus, unsteady flow calculations have beenperformed for this case. These show large scale unsteadiness in the jet penetration area. In the dynamic field, the total rms values of the modelled and mean fluctuations showgood agreement with the LES data. In the thermal field calculation, a range of the flowconditions and solid material properties have been considered, and the predicted conjugateheat transfer predicted performance is broadly in line with the behaviour shownin the channel flow.
28

Studies on Optoelectronic Properties of Structurally Confined Conjugated Molecules and Molecular Aggregates / 規定された共役構造を有する分子の凝集制御と光電子物性に関する研究

Hattori, Yusuke 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24236号 / 工博第5064号 / 新制||工||1790(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 関 修平, 教授 今堀 博, 教授 杉安 和憲 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
29

A study of IAA conjugate physiology in Arabidopsis thaliana

Campanella, James Joseph January 1996 (has links)
No description available.
30

Anticancer Natural Products: Evolution and their Biosynthetic Site-Selective Conjugation to Antibodies

Vanner, Stephanie January 2014 (has links)
Natural products are an important resource for cancer therapy, with highly potent and diverse anticancer activities. Natural product biosynthesis is well comprehended, however the evolutionary principles governing the alteration of enzymatic assembly lines to yield molecules with activity toward distinct various cellular targets are not understood. This gap in knowledge hinders efforts to synthetically combinatorialize assembly lines to yield “unnatural” natural products with important or hybrid activity toward up-regulated targets in cancer. Furthermore, natural products did not evolve in the context of mammalian systems and would benefit from a delivery mechanism to cancerous cells to improve their ability to generate successful clinical outcomes. Consequently, natural products were linked to antibodies targeted to cell surface proteins up-regulated on cancer cells, generating antibody-drug conjugates (ADC). The conjugation methodology is problematic by yielding ADCs with varying numbers of drugs loaded per antibody. This lack of batch-to-batch standardization limits our ability to completely evaluate the safety profiles and efficacy of ADCs and determine proper dosages for patients. In this research, light was shed on biosynthetic evolutionary changes through the study of the antimycin-type family of depsipeptides, specifically demonstrating that modular insertions or deletions lead to natural product structural diversification. Additionally, a novel biosynthetic enzymatic method was established to site-selectively conjugate natural products to antibodies in order to facilitate the development of more sophisticated cancer therapies. / Thesis / Master of Science (MSc)

Page generated in 0.0363 seconds