• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 10
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the antigenicity of citrate synthase

Ali, Daham Hassan January 1989 (has links)
No description available.
2

A Diagnostic Target Against Clostridium bolteae, Towards a Multivalent Vaccine for Autism-Related Gastric Bacteria

Pequegnat, Brittany 16 August 2013 (has links)
Constipation and diarrhea are common in autistic patients. Antibiotic treatment against bacteria appears to partially alleviate autistic-related symptoms. The bacterium Clostridium bolteae has been shown to be overabundant in the intestinal tract of autistic children suffering from gastric intestinal ailments, and as such is an organism that could potentially aggravate gastrointestinal symptoms. Investigation of the cell-wall polysaccharides of C. bolteae was employed in order to evaluate their structure and immunogenicity. Exploration revealed that C. bolteae produces a conserved specific capsular polysaccharide comprised of rhamnose and mannose units: [->3)-α-D-Manp-(1->4)-β-D-Rhap-(1->], which is immunogenic in rabbits. This is the first described immunogen of C. bolteae and indicates the prospect of using this polysaccharide as a vaccine to reduce or prevent colonization of the intestinal tract in autistic patients, and as a diagnostic marker for rapid detection. This diagnostic target can be used in a multivalent vaccine, which may potentially include Sutterella and Desulfovibrio.
3

Targeting The CD4 Biniding Site In HIV-1 Immunogen Design

Bhattacharyya, Sanchari 07 1900 (has links) (PDF)
Over three decades have passed since the discovery of HIV-1, yet an AIDS vaccine remains elusive. The envelope glycoprotein of HIV-1 gp120, is the most exposed protein on the viral surface and thus serves as an important target for vaccine design. However, various factors like high mutability of gp120, extensive glycosylation and very high conformational flexibility of gp120 have confounded all efforts to design a suitable immunogen that elicits broad and potent neutralizing antibodies against HIV-1. In Chapter 1, a brief description of the structural organization of HIV-1 along with the progress made and the difficulties encountered in the development of a vaccine are presented. In Chapter 2, the design and characterization of an outer domain immunogen of HIV-1 gp120 is discussed. The outer domain (OD) of the envelope glycoprotein gp120 is an important target for vaccine design since it contains a number of conserved epitopes, including a large fraction of the CD4 binding site. Attempts to design OD based immunogens in the past have met with little success. In this work, we designed an OD immunogen based on the sequence of the HXBc2 strain, expressed and purified it from E. coli (ODEC). The ODEC molecule lacks the variable loops V1V2 and V3 and incorporates 11 designed mutations at the interface of the inner and the outer domains of gp120 to increase solubility. Biophysical studies showed that ODEC is folded and protease resistant while ODEC lacking the designed mutations is highly aggregation prone. In contrast to previously characterized OD constructs, ODEC bound CD4 and the broadly neutralizing antibody b12 with micromolar affinities, but not the non-neutralizing antibodies b6 and F105. Further improvement in the refolding protocol yielded a better structured molecule that bound CD4, b12 and VRC01 with sub-micromolar affinities. In rabbit immunization studies with animals primed with ODEC and boosted with gp120, the sera are able to neutralize Tier I viruses and some Tier II viruses like JRFL and RHPA with measurable IC50s. This is one of the first examples of a gp120 fragment based immunogen which was able to elicit sera that showed modest neutralization of some Tier II viruses. Subsequently amide hydrogen-deuterium exchange studies of ODEC showed that though the molecule is well-folded, it is labile to exchange. This might indicate why ODEC does not elicit high amounts of neutralizing antibodies. In Chapter 3, we report the design and characterization of two smaller fragments of gp120 (b121a and b122a) to target the epitope of the broadly neutralizing antibody b12. The region chosen comprised of a compact beta barrel in the lower part of the outer domain of gp120. Unlike ODEC, the fragments corresponding to these constructs were not contiguous stretches in gp120. Thus we used linkers to connect them. Further, nine designed mutations were introduced at exposed hydrophobic regions of the fragment to increase its solubility. The designed protein fragments were expressed in E. coli in order to prevent glycosylation and consequent epitope masking that might occur if expressed in an eukaryotic expression system. Biophysical studies showed that b121a/b122a are partially folded. Disulfide mapping studies showed that the expected disulfide bridges were formed. The designed immunogens could bind b12, but not the non-neutralizing antibody b6. Sera from rabbits primed with b121a/b122a protein fragments and boosted with full-length gp120 showed broad neutralizing activity against a 20 virus panel including Tier2 and 3 viruses such as PVO4, CAAN, CAP45 and ZM233. Sera from animals that received only gp120 showed substantially decreased breadth and potency. Serum depletion studies confirmed that neutralization was gp120 directed and that a substantial fraction of it was mediated by CD4 binding site (CD4bs) antibodies. The data demonstrate that it is possible to elicit broadly neutralizing sera against HIV-1 in small animals, despite the restricted germline VH gene usage observed so far in broadly neutralizing CD4bs directed antibodies in humans. In Chapter 3, we also discuss design of a new construct b122d, which includes regions corresponding to b121a, but with linker connectivities similar to b122a. It was found to bind b12 with sub-micromolar affinity and also showed proteolytic resistance comparable to b121a. This indicated that though b121a showed better proteolytic resistance than b122a, it bound b12 poorly because one of the linkers might sterically occlude the b12 binding site. As the b12 binding site constructs based on the subtype B HXBc2 sequence elicited neutralizing antibodies, we chose to design similar constructs based on a subtype C sequence. The proteins (Cb122a and Cb122d) were purified from E. coli, characterized and found to bind b12 with micromolar affinity. The new constructs (b122d, Cb122a, Cb122d) will shortly be tested in animal immunizations. Disulfides are known to stabilize proteins by reducing the entropy of the unfolded state. In Chapter 4, we attempted to stabilize b122a by engineering disulfides. The disulfides are expected to rigidify the molecule and possibly improve its ability to elicit neutralizing antibodies. Some of the disulfides tested in b122a were predicted based on stereo-chemical criteria by the program MODIP (Modeling Disulfide Bridges in Proteins), while others were chosen at non-hydrogen bonded positions (NHB) on anti-parallel beta strands, based on earlier studies in the lab. Some of the disulfide mutants showed better binding to b12 and increased protection to enzymatic digestion. These disulfides were subsequently engineered into other b12 binding site constructs, namely b122d, Cb122a and Cb122d and these were biophysically characterized. Amongst the various disulfides that were tested in b122a, the one at 293-448 (according to HxBc2 numbering) was found to improve the binding to b12 by about ~16-fold. Not only did this disulfide improve the binding of b122a to b12, it also showed similar improvement in case of b122d and both the subtype C constructs tested. Moreover, since the position 293-448 is an exposed NHB position of an anti-parallel beta strand, spontaneous formation of the disulfide and the improved binding to b12 for all the proteins tested reinforces the fact that cysteines engineered at such positions leads to formation of a stabilizing disulfide. All the proteins containing the 293-448 disulfide will be used in future for rabbit immunization studies to examine if they elicit better neutralizing antibodies than the parent b122a molecule. As discussed in Chapter 2, ODEC showed a very fast rate of hydrogen exchange, indicating that it is flexible. As the 293-448 disulfide improved the binding of b12 binding site constructs, in Chapter 5, disulfides at exposed NHB positions were introduced in the context of ODEC. Previously engineered inter-domain disulfides have been shown to reduce the conformational flexibility of gp120. The disulfides in the lower beta barrel of the outer domain which harbors the CD4 binding site were found to be monomeric, oxidized and could bind neutralizing CD4bs antibodies better than the WT protein. On the other hand, the disulfides in the upper barrel of the outer domain were aggregated and bound antibodies poorly compared to the WT protein, indicating that this part of the molecule may not be well structured in the fragment. However, there was no significant change in the hydrogen exchange kinetics for these mutants. Mutations in the Phe-43 cavity of gp120 (S375W/T257S) which constrain gp120 in the CD4 bound conformation were also tested in ODEC (ODEC-CF). This protein was found to bind CD4 and VRC01 about 8 and 2 times better respectively than WT ODEC. These improved immunogens will be used shortly in rabbit immunization studies. In an attempt to improve the immunogenicity of the gp120 fragment proteins, b121a, b122a and ODEC were displayed on/conjugated to the surface of Qβ virus like particles in Chapter 6. Exposed single cysteine mutants of these proteins were purified, characterized biophysically and found to have the single cysteine free for conjugation. These were subsequently conjugated to the Qβ virus like particles through click chemistry (carried out in Prof. MG Finn’s lab at TSRI), purified and used for rabbit immunization studies. The gp120 ELISA titers of the elicited sera showed that conjugation may be a better option to display foreign antigens on the surface than genetic fusion. There was no difference in the ELISA titers with and without adjuvant, indicating that the particles are sufficiently immunogenic in themselves. Sera from these studies will be tested in neutralization assays. The overall utility of the particle based display approach will be assessed by comparing neutralization data from particle based immunizations to identical immunizations with unconjugated immunogens. Most HIV-1 broadly neutralizing antibodies are directed against the gp120 subunit of the Env surface protein. Native Env consists of a trimer of gp120:gp41 heterodimers, and in contrast to monomeric gp120, preferentially binds CD4 binding site (CD4bs) directed neutralizing antibodies over non-neutralizing ones. Some cryo-electron tomography studies have suggested that the V1V2 loop regions of gp120 are located close to the trimer interface. To understand this further, in Chapter 7, we have designed cyclically permuted variants of gp120 with and without the h-CMP and SUMO2a trimerization domains inserted into the V1/V2 loop. h-CMP-V1cyc is one such variant where 153 and 142 are the N and C terminal residues of cyclically permuted gp120 and h-CMP is fused to the N-terminus. This molecule forms a trimer under native conditions and binds CD4 and the neutralizing CD4bs antibodies b12 with significantly higher affinity relative to wtgp120. It binds the non-neutralizing CD4bs antibody F105 with lower affinity than gp120. A similar derivative, h-CMP-V1cyc1 bound the V1V2 directed broadly neutralizing antibodies PG9/PG16 with ~20 fold higher affinity compared to wild type JRCSF gp120. These cyclic permutants of gp120 are properly folded and are potential immunogens. The data also support Env models in which the V1V2 loops are proximal to the trimer interface. In Appendix A1, peptide analogs of selected secondary structural elements of gp120 were designed. Some of them were grafted on known scaffold proteins. The synthesized peptides were characterized biophysically. Most of the peptides did not have a well-defined secondary structure, indicating that they are not stable in isolation. Hence they were not pursued for further studies. One helical peptide adopted a significant amount of structure in aqueous buffer and will be shortly conjugated to carrier proteins and used in immunization studies. In Appendix A2, we created error-prone PCR libraries and loop-randomization libraries of b12 binding site constructs and attempted to screen these for better b12 binding using phage-display. However the screening was unsuccessful as the phages showed non-specific binding to b12 antibody. These libraries will be screened in future using yeast display.
4

Untersuchungen zum direkten und indirekten Nachweis von Labormausinfektionen mit Rodentibacter heylii, Rodentibacter pneumotropicus und Muribacter muris

Kähl, Sophie 10 August 2021 (has links)
Einleitung Rodentibacter (R.) pneumotropicus und R. heylii sind wichtige Pneumonie-, Otitis- und Mastitiserreger in Labormäusen. Auf Grund der hohen Prävalenz und Relevanz für tierexperimentelle Studien sind gut etablierte diagnostische Methoden entscheidend. Die bisherigen Möglichkeiten der Diagnostik sind jedoch nicht zufriedenstellend. Auch die Differenzierung zu Muribacter (M.) muris, einer apathogenen Pasteurellaceae, ist nicht mit allen Methoden möglich. Die Pathogenese von Infektionen mit Rodentibacter spp. ist bis heute nicht endgültig beschrieben und auch Virulenzfaktoren sind nur in Form rekombinanter Proteine in vitro untersucht. Ziele der Untersuchung Diese Doktorarbeit verfolgte die Ziele, den direkten Erregernachweis wichtiger muriner Pasteurellaceae über MALDI-TOF MS zu etablieren und zu evaluieren und indirekte spezifische und sensitive Nachweisverfahren (ELISA) von Labormausinfektionen mit R. pneumotropicus und R. heylii im Rahmen eines Verbundprojektes zu entwickeln. Des Weiteren sollte ein neu identifiziertes Immunogen eines hochvirulenten R.-heylii-Stammes geno- und phänotypisch analysiert und charakterisiert werden. Material und Methoden In der ersten Publikation wurden Feldisolate und Referenzstämme der Spezies R. pneumotropicus, R. heylii, R. ratti und M. muris mittels 16S rRNA identifiziert und daraus Referenzspektren zur Erweiterung der MALDI-TOF MS-Datenbank erstellt. Die Evaluierung fand mittels Abgleiches mit einer etablierten Multiplex-PCR und bereits publizierter Stämme statt. Für die zweite Publikation wurden BALB/c- und C57BL/6-Mäuse mit R. heylii SF27GVG oder M. muris infiziert. Als Readout Parameter wurde ein klinischer und pathologischer Score eingesetzt. Weiterhin erfolgte eine quantitative oder semiquantitative bakteriologische Untersuchung unterschiedlicher Gewebe und Körperflüssigkeiten sowie eine serologische Untersuchung auf Serokonversion mit unterschiedlichen ELISAs. Das durch Immunoproteomics identifizierte R. heylii Immunogen A (RhiA) wurde nach in silico Analysen in trunkierter Form rekombinant exprimiert und zur Etablierung eines ELISA genutzt. Die phänotypische Charakterisierung fand mittels Western Blot, Durchflusszytometrie und Immunhistochemie statt. Hierfür wurde ein RhiA-spezifischer IgY-Antikörper eingesetzt. In der dritten Publikation wurde das Protein CARLO-1 kloniert und rekombinant exprimiert. Der neu etablierte ELISA wurde mit Hilfe von Rekonvaleszenzseren verschiedener Tierversuche evaluiert und außerdem die Konservierung des entsprechenden Gens in R. heylii und R. pneumotropicus-Stämmen analysiert. In der vierten Studie wurde das für BALB/c-Mäuse bereits etablierte R. pneumotropicus Infektionsmodell eingesetzt, um die Schutzwirkung einer Inaktivatvakzine vor einer Infektion der Lunge mit diesem Pathogen zu ermitteln. Ergebnisse Die erweiterte MALDI-TOF MS-Datenbank ermöglicht eine sichere Differenzierung zwischen R. heylii, R. pneumotropicus, R. ratti und M. muris, wie die Übereinstimmungen zu Ergebnissen der Multiplex-PCR zeigen. Im Tierversuch zeigte sich, dass R. heylii SF27GVG hoch virulent ist, obwohl dieser Stamm keines der bekannten RTX-Proteine trägt. Das identifizierte Immunogen RhiA dieses Stammes liegt oberflächenassoziiert vor, wird in vitro und in vivo exprimiert und hat strukturelle Ähnlichkeiten zu PnxIII. Es kann in infizierten Lungen assoziiert mit Bakterienrasen nachgewiesen werden und ist als RTX-Adhäsin möglicher Weise an der Biofilmproduktion beteiligt. RhiA ist hoch spezifisch für R. heylii (ELISA-Spezifität 100%). Es wird aber nur von wenigen der untersuchten Stämme gebildet. Der CARLO-1-ELISA zeigt eine Sensitivität von 93,3% und eine Spezifität von 100%. Das kodierende Gen ist in allen untersuchten R. heylii und R. pneumotropicus-Stämmen konserviert. Mit dem in einer vorausgegangenen Dissertation etablierten R. pneumotropicus Infektionsmodell konnte die protektive Wirkung einer neuen Inaktivatvakzine erfolgreich bestätigt werden. Schlussfolgerungen Nach Erweiterung der Datenbank können R. heylii, R. pneumotropicus und M. muris mittels MALDI-TOF MS differenziert werden. RhiA ist ein hochspezifisches, repetitives, Oberflächen-assoziiertes und in Lungenläsionen exprimiertes RTX-Immunogen, das von einem hochvirulenten R.-heylii-Pathotyp gebildet wird. Durch die Unterstützung von Kooperationspartnern konnte der CARLO-1-ELISA als spezifisches und sensitives indirektes Nachweisverfahren für Infektionen mit R. pneumotropicus oder R. heylii etabliert und evaluiert werden. Weiterhin wurde erstmalig gezeigt, dass sich mit dem R. pneumotropicus Infektionsmodell die protektive Wirkung einer Inaktivatvakzine aufzeigen lässt.:I. Inhaltsverzeichnis I II. Abkürzungsverzeichnis III 1 Einleitung 1 2 Literaturübersicht 2 2.1 Taxonomie 2 2.1.1 Pasteurellaceae 2 2.1.2 Rodentibacter spp. 5 2.1.3 Muribacter muris 5 2.2 Klinik und Virulenzfaktoren 7 2.2.1 Pasteurellaceae 7 2.2.2 Rodentibacter heylii und Rodentibacter pneumotropicus 11 2.3 Diagnostik 13 2.3.1 Pasteurellaceae 13 2.3.1.1 Monitoring 13 2.3.1.2 Direkte Diagnostik 14 2.3.1.3 Indirekte Diagnostik 20 2.3.2 Rodentibacter heylii und Rodentibacter pneumotropicus 22 2.3.3 Muribacter muris 23 3 Publikationen 25 3.1 Differentiation of Rodentibacter pneumotropicus, Rodentibacter heylii and Muribacter muris by MALDI-TOF MS 25 3.2 Identification of a large repetitive RTX immunogen in a highly virulent Rodentibacter heylii strain 31 3.3 Sensitive and immunogen-specific serological detection of Rodentibacter pneumotropicus infections in mice 43 3.4 Low-Energy Electron Irradiation Efficiently Inactivates the Gram-Negative Pathogen Rodentibacter pneumotropicus—A New Method for the Generation of Bacterial Vaccines with Increased Efficacy 57 4 Diskussion 69 5 Zusammenfassung 75 6 Summary 77 7 Literaturverzeichnis 79 8 Anhang 93 8.1 Anhang zu „Identification of a large repetitive RTX immunogen in a highly virulent Rodentibacter heylii strain” 93 8.2 Anhang zu “Sensitive and immunogen-specific serological detection of Rodentibacter pneumotropicus infections in mice“ 102 8.3 Anhang zu “Low-Energy Electron Irradiation Efficiently Inactivates the Gram-Negative Pathogen Rodentibacter pneumotropicus—A New Method for the Generation of Bacterial Vaccines with Increased Efficacy” 123 Danksagung 125
5

Production and delivery of recombinant subunit vaccines

Andersson, Christin January 2000 (has links)
Recombinant strategies are today dominating in thedevelopment of modern subunit vaccines. This thesis describesstrategies for the production and recovery of protein subunitimmunogens, and how genetic design of the expression vectorscan be used to adapt the immunogens for incorporation intoadjuvant systems. In addition, different strategies fordelivery of subunit vaccines by RNA or DNA immunization havebeen investigated. Attempts to create general production strategies forrecombinant protein immunogens in such a way that these areadapted for association with an adjuvant formulation wereevaluated. Different hydrophobic amino acid sequences, beingeither theoretically designed or representing transmembraneregions of bacterial or viral origin, were fused on gene leveleither N-terminally or C-terminally to allow association withiscoms. In addition, affinity tags derived fromStaphylococcus aureusprotein A (SpA) or streptococcalprotein G (SpG), were incorporated to allow efficient recoveryby means of affinity chromatography. A malaria peptide, M5,derived from the central repeat region of thePlasmodium falciparumblood-stage antigen Pf155/RESA,served as model immunogen in these studies. Furthermore,strategies forin vivoorin vitrolipidation of recombinant immunogens for iscomincorporation were also investigated, with a model immunogendeltaSAG1 derived fromToxoplasma gondii. Both strategies were found to befunctional in that the produced and affinity purified fusionproteins indeed associated with iscoms. The iscoms werefurthermore capable of inducing antigen-specific antibodyresponses upon immunization of mice, and we thus believe thatthe presented strategies offer convenient methods for adjuvantassociation. Recombinant production of a respiratory syncytial virus(RSV) candidate vaccine, BBG2Na, in baby hamster kidney(BHK-21) cells was investigated. Semliki Forest virus(SFV)-based expression vectors encoding both intracellular andsecreted forms of BBG2Na were constructed and found to befunctional. Efficient recovery of BBG2Na could be achieved bycombining serum-free production with a recovery strategy usinga product-specific affinity-column based on a combinatoriallyengineered SpA domain, with specific binding to the G proteinpart of the product. Plasmid vectors encoding cytoplasmic or secreted variants ofBBG2Na, and employing the SFV replicase for self-amplification,was constructed and evaluated for DNA immunization against RSV.Both plasmid vectors were found to be functional in terms ofBBG2Na expression and localization. Upon intramuscularimmunization of mice, the plasmid vector encoding the secretedvariant of the antigen elicited significant anti-BBG2Na titersand demonstrated lung protective efficacy in mice. This studyclearly demonstrate that protective immune responses to RSV canbe elicited in mice by DNA immunization, and that differentialtargeting of the antigens expressed by nucleic acid vaccinationcould significantly influence the immunogenicity and protectiveefficacy. We further evaluated DNA and RNA constructs based on the SFVreplicon in comparison with a conventional DNA plasmid forinduction of antibody responses against theP. falciparumPf332-derived antigen EB200. In general,the antibody responses induced were relatively low, the highestresponses surprisingly obtained with the conventional DNAplasmid. Also recombinant SFV suicide particles inducedEB200-reactive antibodies. Importantly, all immunogens inducedan immunological memory, which could be efficiently activatedby a booster injection with EB200 protein. <b>Keywords</b>: Affibody, Affinity chromatography, Affinitypurification, DNA immunization, Expression plasmid, Fusionprotein, Hydrophobic tag, Iscoms, Lipid tagging, Malaria,Mammalian cell expression, Recombinant immunogen, RespiratorySyncytial Virus, Semliki Forest virus, Serum albumin,Staphylococcus aureusprotein A, Subunit vaccine,Toxoplasma gondii
6

Production and delivery of recombinant subunit vaccines

Andersson, Christin January 2000 (has links)
<p>Recombinant strategies are today dominating in thedevelopment of modern subunit vaccines. This thesis describesstrategies for the production and recovery of protein subunitimmunogens, and how genetic design of the expression vectorscan be used to adapt the immunogens for incorporation intoadjuvant systems. In addition, different strategies fordelivery of subunit vaccines by RNA or DNA immunization havebeen investigated.</p><p>Attempts to create general production strategies forrecombinant protein immunogens in such a way that these areadapted for association with an adjuvant formulation wereevaluated. Different hydrophobic amino acid sequences, beingeither theoretically designed or representing transmembraneregions of bacterial or viral origin, were fused on gene leveleither N-terminally or C-terminally to allow association withiscoms. In addition, affinity tags derived from<i>Staphylococcus aureus</i>protein A (SpA) or streptococcalprotein G (SpG), were incorporated to allow efficient recoveryby means of affinity chromatography. A malaria peptide, M5,derived from the central repeat region of the<i>Plasmodium falciparum</i>blood-stage antigen Pf155/RESA,served as model immunogen in these studies. Furthermore,strategies for<i>in vivo</i>or<i>in vitro</i>lipidation of recombinant immunogens for iscomincorporation were also investigated, with a model immunogendeltaSAG1 derived from<i>Toxoplasma gondii</i>. Both strategies were found to befunctional in that the produced and affinity purified fusionproteins indeed associated with iscoms. The iscoms werefurthermore capable of inducing antigen-specific antibodyresponses upon immunization of mice, and we thus believe thatthe presented strategies offer convenient methods for adjuvantassociation.</p><p>Recombinant production of a respiratory syncytial virus(RSV) candidate vaccine, BBG2Na, in baby hamster kidney(BHK-21) cells was investigated. Semliki Forest virus(SFV)-based expression vectors encoding both intracellular andsecreted forms of BBG2Na were constructed and found to befunctional. Efficient recovery of BBG2Na could be achieved bycombining serum-free production with a recovery strategy usinga product-specific affinity-column based on a combinatoriallyengineered SpA domain, with specific binding to the G proteinpart of the product.</p><p>Plasmid vectors encoding cytoplasmic or secreted variants ofBBG2Na, and employing the SFV replicase for self-amplification,was constructed and evaluated for DNA immunization against RSV.Both plasmid vectors were found to be functional in terms ofBBG2Na expression and localization. Upon intramuscularimmunization of mice, the plasmid vector encoding the secretedvariant of the antigen elicited significant anti-BBG2Na titersand demonstrated lung protective efficacy in mice. This studyclearly demonstrate that protective immune responses to RSV canbe elicited in mice by DNA immunization, and that differentialtargeting of the antigens expressed by nucleic acid vaccinationcould significantly influence the immunogenicity and protectiveefficacy.</p><p>We further evaluated DNA and RNA constructs based on the SFVreplicon in comparison with a conventional DNA plasmid forinduction of antibody responses against the<i>P. falciparum</i>Pf332-derived antigen EB200. In general,the antibody responses induced were relatively low, the highestresponses surprisingly obtained with the conventional DNAplasmid. Also recombinant SFV suicide particles inducedEB200-reactive antibodies. Importantly, all immunogens inducedan immunological memory, which could be efficiently activatedby a booster injection with EB200 protein.</p><p><b>Keywords</b>: Affibody, Affinity chromatography, Affinitypurification, DNA immunization, Expression plasmid, Fusionprotein, Hydrophobic tag, Iscoms, Lipid tagging, Malaria,Mammalian cell expression, Recombinant immunogen, RespiratorySyncytial Virus, Semliki Forest virus, Serum albumin,<i>Staphylococcus aureus</i>protein A, Subunit vaccine,<i>Toxoplasma gondii</i></p>
7

Antigenic Determinants Of Chicken Riboflavin Carrier Protein: Structural And Functional Aspects

Beena, T K 10 1900 (has links)
Investigations detailed in this thesis constitute a part of the continuing programme of research undertaken in our laboratory on the riboflavin carrier protein (RCP) with partic­ular reference to identification and synthesis of neutralizing antigenic determinants, design of relevant epitope mimetics with improved immunogenic characteristics and relationship between their secondary structures and immunological properties. The riboflavin carrier protein is elaborated as a reproductive stratagem to ensure ade­quate vitamin deposition in the developing oocyte in the chickens. The protein is scrupu­lously conserved through evolution in terms of physico chemical and immunological char­acteristics from fish through birds to mammals, including primates. In rodents and sub­human primates immunization with the heteroantigen viz., chicken egg white RCP leads to functional neutralization of the endogenous maternal protein resulting in curtailment of early pregnancy. Thus, the crucial role of RCP in maintenance of pregnancy is established and the protein identified as a potential candidate vaccine for immimocontraception. Fur­ther studies with the reduced and carboxymethylated (RCM) RCP as the immunogen re­veal that antibodies induced by RCM-RCP are equally effective in bioneutralization of the endogenous protein. So it can be surmised that the native folded structure of RCP is not obligatory for eliciting bioneutralizing antibodies. In an attempt to identify functionally relevant regions of the protein, a panel of monoclonal antibodies (MAbs) have been raised and characterized. One of the MAbs viz., 6J32Ci2 could bring about early fetal resorp-tion when injected to mice with confirmed pregnancies. These results prompted a detail molecular immunological approach to understand underlying mechanisms. The principal aims of the present investigations include: (1) identification of neutralizing epitopes; (2) synthesis of peptidyl sequences incorporating these determinants; (3) an understanding of the structure, antigenic and immunogenic characteristics of these peptides; (4) correlation of conformational and antigenic characteristics; (5) rational design and synthesis of peptide analogs with greater propensity to assume predicted secondary structures; (6) analysis of conformation dependency of peptide antigens and the importance of such conformation in generating an optimal B-cell response; (7) the efficacy of the antibodies elicited by these Peptide antigens in neutralizing endogenous protein with the ultimate aim of designing synthetic vaccines. Chapter 1 of this thesis deals with a general introduction summarizing the current status of knowledge regarding the chemistry and biology of RCP as well as synthetic pep­tides as potential immunogens. Chapter 2 outlines details of the experimental procedures adopted. Chapter 3 describes the results of investigations on the C-terminal fragment (residues 200-219) of cRCR The main consideration in selecting this sequence for the design of a potential peptide-based vaccine relied on the epitopic specificity of the neu­tralizing MAb 6S2C12. Epitope mapping using the Pepscan method revealed that the monoclonal antibody recognizes a core sequence corresponding to residues 203-210 of the cRCP. A 21-residue synthetic peptide (C-21) comprising this epitope was synthesized and antibodies elicited to the peptide conjugated to two different carriers, namely diphtheria toxoid and purified protein derivative (PPD) for T-cell help. In both active and passive immunoneutralization experiments, the peptide specific neutralizing antibodies interfered with the biological function of the protein and hence either protected from pregnancy or caused early fetal resorption in rodents as well as in sub-human primates. The conforma-tional properties of the peptide in aqueous buffers were analyzed from circular dichroism which revealed the absence of any ordered structure in the native C-21 peptide. Theoreti­cal predictions of secondary structure suggested a propensity for an t*-helical structure for this fragment in the native protein. Therefore, influence of the helix-promoting solvent, vizM 2,2,2,trifluroethanol (TFE) on the C-21 peptide was investigated. Addition of TFE resulted in spectral changes with negative bands at 208 and 222 nm and a positive band at 190 rim which are typical of an a-helix. To gain more information on the conformational characteristics of this peptide, it was considered worthwhile to stabilize the native peptide in an a-helical conformation based on simple rational design principles. Towards this end, four analogs of the parent peptide were synthesized and helix stabilization was sought to be achieved by introducing either salt bridges or back-bone conformational constraints such as by incorporating a-amino isobutyric acid at appropriate positions. In all the analogs, the core sequence, recognised by the neutralizing MAb 6B2C12 was maintained intact to ensure induction of antibodies capable of recognizing the native protein. CD spectral analysis of the analog peptides indicated that all the engineered peptides had varying degrees of enhanced helicities as compared to the parent peptide. The immunogenicity of each analog was studied by to the relevant peptide-diphtheria toxoid conjugates and analyzing their reactivities with the native protein by direct and competitive ELISA. The results revealed that these engi­neered conformational analogs axe highly immunogenic eliciting high titers of anti-protein antibodies. The relative affinities of these antibodies to bind cRCP were investigated. The antibodies to peptide analogs had higher affinities for the native protein and a positive correlation was found between the helical content of the peptide antigen in question and the relative affinity of corresponding antibody. The antibodies directed to all the peptide analogs could block the function of RCP resulting in early embryonic resorption when ad­ministered to pregnant mice. An interesting pattern of immunological cross-reactivity has been observed with the native and designed peptides. Antibodies raised to constrained helical analogs could bind the C-21 peptide which is structurally flexible. In contrast, the antibodies raised to the flexible native peptide antigen were inefficient in recognizing the structured peptides. The ability of all the peptide antibody to bind the native protein has been interpreted in terms of a conformationally flexible C-terminus region in cRCP. Chapter 4 details investigations on a 21-residue peptide (N- 21) from the N-terminiis (4-24) of the protein. Selection of this peptidyl sequence relied on theoretical prediction of potential sequential determinants on RCP other than at C-terminus as well as on the outcome of immunoneutralisation experiments using antibodies to egg yolk RCP which lacks the relevant C-terminal determinants. The structure of this peptide in solution was analyzed by two dimensional NMR and CD. NMR experiments revealed the presence of two structured regions in the peptide. Diagnostic nuclear Overhauser effects characteristics of reverse turns or short frayed helical segments over residues 3-9 and 18-21 of the peptide were obtained. CD spectra showed the presence of a strong, negative band at 204 nm over a wide range of solvent conditions, a feature which has been interpreted in terms of a "polyproline Il-like" segment encompassing residues 11-16 which corresponds to an interesting (X-Pro)^ repeat in the N-21 sequence. Specific antibodies were generated to this peptide as a conjugate with diphtheria tox­oid. Administration of the antipeptide antibodies could neutralize the protein in vivo as demonstrated by early embryonic loss in pregnant mice. In limited experiments the anti­peptide antibodies showed propensity to protect bonnet monkeys from pregnancy over a few consecutive ovulatory cycles when titres are maintained elevated by periodic boosting. To address the relationship between peptide structures and antigenicity, epitope mapping of this antipeptide antibodies as well- as the polyclonal antibodies to native RCP was undertaken using the Pepscan method. The results reveal that antigenic regions correspond well to conformationally well-defined elements of structure with the polyproline II-like seg­ment being a common antigenic determinant on both the peptide and the native protein. These observations are suggestive of the involvement of both the N and C-terminal regions of RCP in terms of its binding to putative plasma membrane receptors.
8

EQUINE SERUM ANTIBODY RESPONSES TO STREPTOCOCCUS EQUI AND STREPTOCOCCUS ZOOEPIDEMICUS

De Negri, Rafaela 01 January 2013 (has links)
Streptococcus zooepidemicus (Sz) and Streptococcus equi (Se) share 98% DNA sequence homology, but display different pathogenic properties. Infection by one organism does not cross-protect against the other. To better understand pathogenic differences between these organisms and gain information about which proteins are expressed in horses infected experimentally with Se, intrauterine Sz or naturally with respiratory Sz we compared antibody specificities of convalescent sera using ELISA. These comparisons were based on sets of 8 and 14 immunoreactive recombinant proteins of Se strain CF32 and Sz strain NC78, respectively. Sera from donkeys that were previously naturally affected with strangles and later developed Sz pneumonia secondary to an experimental influenza challenge were also included. Serum antibody responses were quantitatively and qualitatively much greater following recovery from strangles than following respiratory Sz infection. Increased reactions to Se proteins IdeE2, Se75.3, Se46.8, Se18.9 and Se42.0 were observed for the majority of strangles sera but not for sera from respiratory Sz infection cases. Reactions of sera from Sz respiratory disease to Sz proteins varied greatly and were mostly to HylC and ScpC. Interestingly, sera of donkey recovered from Sz bronchopneumonia did not show increased antibody reaction to any of the proteins even though these donkeys had also recovered from clinical strangles 6 months previously. Only 1/5 mare with Sz placentitis presented increased serum antibody responses to MAP. In conclusion, adaptive immune responses to Se of horses with strangles are stronger and involve a greater number of proteins than adaptive immune responses to Sz infection of the lower respiratory tract. In an effort to develop an improved vaccine against Se, modified live strain of EHV-1, RacH was constructed to express three recombinant antigens of Se SeM, IdeE and Se18.9. Two groups of 10 and 2 ponies were vaccinated intramuscularly or intranasally, respectively. Another group (n=6) vaccinated with empty RacH served as controls. Sera from 2/3 ponies from each vaccination groups and 1/2 serum from IN vaccinated ponies showed increased serum neutralizing antibodies to EHV-1. ELISA detected no significant increase in antibodies to proteins. Only one IM and IN vaccinated pony showed serum bactericidal activity post vaccination.
9

Computational Analyses of Protein Structure and Immunogen Design

Patel, Siddharth January 2015 (has links) (PDF)
The sequence of a polypeptide chain determines its structure which in turns determines its function. A protein is stabilized by multiple forces; hydrophobic interaction, electrostatic interactions and hydrogen bond formation between residues. While the above forces are non-covalent in nature the protein structure is also stabilized by disulfide bonds. Structural features such as naturally occurring cavities in proteins also affect its stability. Studying factors which affect a protein’s structural stability helps us understand complex sequence-structure-function relationships, the knowledge of which can be applied in areas such as protein engineering. The work presented in this thesis deals with various and diverse aspects of protein structure. Chapter 1 gives an overall introduction on the topics studied in this thesis. Chapter 2 focuses on a unique, non-regular, structural feature of proteins, viz. protein cavities. Cavities directly affect the packing density of the protein. It has been shown that large to small cavity creating mutations destabilize the protein with the extent of destabilization being proportional to the size of cavity created. On the other hand, small to large cavity filling mutations have been shown to increase protein stability. Tools which analyze protein cavities are thus important in studies pertaining to protein structure and stability. The chapter presents two methods which detect and calculate cavity volumes in proteins. The first method, DEPTH 2.0, focuses on accurate detection and volume calculation of cavities. The second method, ROBUSTCAVITIES, focuses on detection of biologically relevant cavities in proteins. We then study another aspect of protein structure – the disulfide bond. Disulfide bonds confer stability to the protein by decreasing the entropy of the unfolded state. Previous studies which attempted to engineer disulfides in proteins have shown mixed results. Previously, disulfide bonds in individual secondary structures were characterized. Analysis of disulfides in α-helices and antiparallel β-strands yielded important common features of such bonds. In Chapter 3 we present a review of these studies. We then use MODIP; a tool that identifies amino acid pairs which when mutated to cysteines will most likely form a disulfide bond, to analyze disulfide bonds in parallel β-strands. A direct way to analyze sequence-structure relationships is via mutating individual residues, evaluating the effect on stability and activity of the protein and inferring its effect on protein structure. Saturation mutagenesis libraries, where all possible mutations are made at every position in the protein contain a huge amount of information pertaining to the effect of mutations on structure. Making such libraries and screening them has been an extremely resource intensive process. We combine a fast inverse PCR based method to rapidly generate saturation mutagenesis libraries with the power of deep sequencing to derive phenotypes of individual mutants without any large scale screening. In Chapter 4 we present an Illumina data analysis pipeline which analyzes sequencing data from a saturation mutagenesis library, and derives individual mutant phenotypes with high confidence. In Chapter 5 we apply the insights derived from structure-function studies and apply it to the problem of protein engineering, specifically immunogen design. The Human Immunodeficiency Virus adopts various strategies to evade the host immune system. Being able to display the conserved epitopes which elicit a broadly neutralizing response is the first step towards an effective vaccine. Grafting such an epitope onto a foreign scaffold will mitigate some of the key HIV defenses. We develop a computational protocol which grafts the broadly neutralizing antibody b12 epitope on scaffolds selected from the PDB. This chapter also describes the only experimental work presented in this thesis viz. cloning, expressing and screening the epitope-scaffolds using Yeast Surface Display. Our epitope-scaffolds show modest but specific binding. In a bid to improve binding, we make random mutant libraries of the epitope-scaffolds and screen them for better binders using FACS. This work is on-going and we aim to purify our epitope-scaffolds, characterize them biophysically and eventually test their efficacy as immunogens.
10

Protein Engineering of HIV-1 Env and Human CD4

Saha, Piyali January 2013 (has links) (PDF)
Since, its discovery over three decades ago, HIV has wrecked havoc worldwide. According to the UNAIDS report 2011, at present 34 million people is living with HIV and AIDS vaccine with broadly neutralizing activity still remains elusive. The envelope glycoproteins on the virion surface, is the most accessible component to the host immune system and therefore is targeted for vaccine design. However, the virus has employed various strategies to avoid the host immune response. The extremely high rate of mutations, extensive glycosylation of the envelope glycoprotein, conformational flexibility of the envelope, has made all the efforts aimed to design a broadly neutralizing immunogen futile. In Chapter1, we briefly discuss about the structural and genomic organization of the HIV-1 along with various strategies the virus has employed to evade the immune system. We also present the progress and failures encountered in the past three decades, on the way to design protective HIV vaccine and inhibitors. On the host cell surface, HIV-1 glycoprotein gp120 binds to the cell surface receptor CD4 and leads to the fusion of viral and host cellular membranes. CD4 is present on the surface of T-lymphocytes. It consists of a cytoplasmic tail, one transmembrane region, and four extracellular domains, D1−D4. sCD4 has been used as an entry inhibitor against HIV-1. However, this molecule could not neutralize primary isolates of the virus. Previously, from our lab, we had reported the design and characterization of a construct consisting of the first two domains of CD4 (CD4D12), that binds gp120 with similar affinity as soluble 4-domain CD4 (sCD4). However, the first domain alone (CD4D1) was previously shown to be largely unfolded and had 3-fold weaker affinity for gp120 when compared to sCD4 [Sharma, D.; et al. (2005) Biochemistry 44, 16192−16202]. In Chapter 2, we describe the design and characterization of three single-site mutants of CD4D12 (G6A, L51I, and V86L) and one multisite mutant of CD4D1 (G6A/L51I/L5K/F98T). G6A, L51I, and V86L are cavity-filling mutations while L5K and F98T are surface mutations which were introduced to minimize the aggregation of CD4D1 upon removal of the second domain. All the mutations in CD4D12 increased the stability and yield of the protein relative to the wild-type protein. The mutant CD4D1 (CD4D1a) with the 4 mutations was folded and more stable compared to the original CD4D1, but both bound gp120 with comparable affinity. In in vitro neutralization assays, both CD4D1a and G6A-CD4D12 were able to neutralize diverse HIV-1 viruses with similar IC50s as 4-domain CD4. These stabilized derivatives of human CD4 are useful starting points for the design of other more complex viral entry inhibitors. Most HIV-1 broadly neutralizing antibodies are directed against the gp120 subunit of the env surface protein. Native env consists of a trimer of gp120−gp41 heterodimers, and in contrast to monomeric gp120, preferentially binds CD4 binding site (CD4bs)-directed neutralizing antibodies over non-neutralizing ones. One group of cryo-electron tomography studies have suggested that the V1V2 loop regions of gp120 are located close to the trimer interface and the other group claimed that the V1V2 loop region is far from the apex of the trimer. To further investigate the position of the V1V2 region, in the native envelope trimer, in Chapter 3, we describe the design and characterization of cyclically permuted variants of gp120 with and without the h-CMP and SUMO2a trimerization domains inserted into the V1V2 loop. h-CMP-V1cyc is one such variant in which residues 153 and 142 are the N- and C-terminal residues, respectively, of cyclically permuted gp120 and h-CMP is fused to the N-terminus. This molecule forms a trimer under native conditions and binds CD4 and the neutralizing CD4bs antibodies b12 with significantly higher affinity than wild-type gp120. It binds non-neutralizing CD4bs antibody F105 with lower affinity than gp120. A similar derivative, h-CMP-V1cyc1, bound the V1V2 loop-directed broadly neutralizing antibodies PG9 and PG16 with ~15-fold higher affinity than wild-type JRCSF gp120. These cyclic permutants of gp120 are properly folded and are potential immunogens. The data also support env models in which the V1V2 loops are proximal to the trimer interface. HIV-1 envelope (env) protein gp120 has approximately 25 glycosylation sites of which ~4 are located in the inner domain, ~7-8 in the V1/V2 and V3 variable loops and the rest in the outer domain (OD) of gp120. These glycans shield env from recognition by the host immune system and are believed to be indispensable for proper folding of gp120 and viral infectivity. However, there is no detailed study that describes whether a particular potential n-linked glycan is indispensable for folding of gp120.Therefore, in Chapter 4, using rationally designed mutations and yeast surface display (YSD), we show that glycosylation is not essential for the correct in vivo folding of OD alone or OD in the context of core gp120. Following randomization of the remaining four glycosylation sites, we isolated a core gp120 mutant, which contained a single inner domain glycan and retained yeast surface expression and broadly neutralizing antibody (bNAb) binding. Thus demonstrates that most gp120 glycans are dispensable for folding in the absence of gp41. However in the context of gp160, we show that all core gp120 glycans are dispensable for folding, recognition of bNAbs and for viral infectivity. We also show that deglycosylated molecules can serve as a starting point to re-introduce epitopes for specific glycan dependent bNAbs. Several of these constructs will also be useful for epitope mapping and env structural characterization. Glycosylation of env is known to inhibit binding to germline precursors of known bNAbs. Hence the present results inform immunogen design, clarify the role of glycosylation in gp120 folding and illustrate general methodology for design of glycan free, folded protein derivatives. On the virion surface env glycoproteins gp120 and gp41 interact via non-covalent interactions and form trimers of heterodimers. Upon binding cell surface receptor CD4 and co-receptor CCR5/CXCR4, gp120 and gp41 undergo a lot of conformational changes, which ultimately lead to the fusion of viral and cellular membranes by formation of six-helix bundle in gp41. High resolution structural information is available for core gp120 and post-fusion six-helix bundle conformation of gp41. However, the structural information about the native gp120:gp41 interface in the native trimer is lacking. In Chapter 5, we describe the design and characterization of various single chain derivatives of gp120 inner doamin and gp41. Among the designed constructs, gp41-id2b is folded but is a mixture of dimer and monomer under native conditions. To facilitate, trimer formation, two trimerization domains (h-CMP and Foldon) were individually fused to the N-terminus of gp41-id2b to generate h-CMP-gp41-id2b and Foldon-gp41-id2b. Although, these molecules were proteolytically more stable than gp41-id2b, they did not form trimer under native conditions. All the single chain derivatives were designed based on the crystal structure of gp120, which was devoid of C1 and C5 domains (PDBID 1G9M). A new set of constructs to mimic the native gp120:gp41 interface will be designed and characterized based on the recently solved crystal structure of gp120 with the C1 and C5 domains (PDBID 3JWD and 3JWO). Helix-helix interactions are fundamental to many biological signals and systems, found in homo- or hetero-multimerization of signaling molecules as well as in the process of virus entry into the host. In HIV, virus-host membrane fusion during infection is mediated by the formation of six helix bundle (6HB) from homotrimers of gp41, from which a number of synthetic peptides have been derived as antagonists of virus entry. Yeast surface two-hybrid (YS2H) system is a platform, which is designed to detect protein-protein interactions occurring through a secretory pathway. In Chapter 6, we describe the use of aYS2H system, to reconstitute 6HB complex on the yeast surface and delineate the residues influencing homo-oligomeric and hetero-oligomeric coiled-coil interactions. Hence, we present YS2H as a platform for facile characterization of hetero-oligomeric interactions and design of antagonistic peptides for inhibition of HIV and many other enveloped viruses relying on membrane fusion for infection, as well as cellular signaling events triggered by hetero-oligomeric coiled coils. However, using this YS2H platform, the native hetero-oligomeric complex of gp120 and gp41 could not be captured. In Appendix 1, we report cloning, expression and purification of PΔGgp120 and ΔGgp120 from methylotrophic yeast Pichia pastoris. PΔGgp120 was purified as a secreted protein. However, in electrophoretic analyses the molecule ran as a heterogeneous smear. Further optimization of the purification protocol and biophysical characterizations of this molecule will be performed in future. In Appendix 2, gp41 variants were expressed on the yeast cell surface as a C-terminally fused protein and its interaction with externally added gp120 was monitored by FACS. The surface expression of the gp41 constructs was poor and they did not show any interaction with gp120.

Page generated in 0.049 seconds