• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conservative numerical schemes for high-frequency wave propagation in heterogeneous media / Schémas numériques conservatifs pour la propagation d’ondes hautes fréquences en milieux hétérogènes

Staudacher, Joan 06 November 2013 (has links)
Le présent travail porte sur la résolution numérique de l’équation des ondes acoustiques ou élastiques dans un milieu homogène par morceaux comportant des interfaces. On s’intéresse à un problème haute fréquence, introduit par des conditions initiales fortement oscillantes, pour lequel on détermine la répartition de la densité d’énergie dans le milieu par une approche dite cinétique (fondée sur l’utilisation d’une transformation de Wigner). Le problème considéré est alors réduit à une équation de transport en milieu homogène du type Liouville, complétée par des lois de réflexion et transmission aux interfaces. Différentes méthodes de résolution et d’autres cas d’application sont par ailleurs évoquées. La résolution numérique de l’équation de transport décrivant l’évolution de la densité d’énergie dans l’espace des phases positions vecteurs d’onde est effectuée par différences finies. Cette technique soulève plusieurs difficultés relatives à la conservation de l’énergie totale dans le milieu et aux interfaces. Elles peuvent être corrigées par des schémas numériques adaptés permettant de limiter la dissipation numérique par une approche globale ou locale. Les développements réalisés concernent l’interpolation des densités d’énergie obtenues par transmission sur la grille des vecteurs d’onde discrets, ainsi que la correction de la différence d’échelle de variation de la vitesse des ondes de part et d’autre des interfaces. L’intérêt de ces adaptations est d’obtenir des schémas conservatifs qui satisfont les critères de convergence usuels des méthodes aux différences finies. Leur construction ainsi que leur mise en œuvre effective constituent le principal apport de cette thèse. La pertinence des méthodes utilisées est illustrée par des exemples de simulation, qui montrent également leur efficacité pour des maillages relativement grossiers. / The present work focuses on the numerical resolution of the acoustic or elastic wave equation in a piece-wise homogeneous medium, splitted by interfaces. We are interested in a high-frequency setting, introduced by strongly oscillating initial conditions, for which one computes the distribution of the energy density by a so-called kinetic approach (based on the use of a Wigner transform). This problem then reduces to a Liouville-type transport equation in a piece-wise homogeneous medium, supplemented by reflection and transmission laws at the interfaces. Several numerical techniques and ranges of application are also reviewed. The transport equation which describes the evolution of the energy density in the phase space positions _ wave vectors is numerically solved by finite differences. This technique raises several difficulties related to the conservation of the total energy in the medium and at the interfaces. They may be alleviated by dedicated numerical schemes allowing to reduce the numerical dissipation by either a global or a local approach. The improvements presented in this thesis concern the interpolation of the energy densities obtained by transmission on the grid of discrete wave vectors, and the correction of the difference of variation scales of the wave celerity on each side of the interfaces. The interest of the foregoing developments is to obtain conservative schemes that also satisfy the usual convergence properties of finite difference methods. The construction of such schemes and their effective implementation constitute the main achievement of the thesis. The relevance of the proposed methods is illustrated by several numerical simulations, that also emphasize their efficiency for rather coarse meshes.
2

Développement d'une méthode de simulation de couplage fluide-structure à l'aide de la méthode SPH

Li, Zhe 14 November 2013 (has links)
L’Interaction Fluide-Structure (IFS) est un sujet d’intérêt dans beaucoup de problèmes pratiques aussi bien pour les recherches académiques ainsi que pour les applications industrielles. Différents types d’approches de simulation numérique peuvent être utilisés pour étudier les problèmes d’IFS afin d’obtenir de meilleurs conceptions et d’éviter des incidents indésirables. Dans ce travail, le domaine du fluide est simulé par une méthode hybride sans maillage (SPH-ALE), et la structure est discrétisée par la méthode d’ ´ Eléments Finis (EF). Considérant le fluide comme un ensemble de particules, on peut suivre l’interface entre le fluide et la structure d’une manière naturelle. Une stratégie de couplage conservant l’énergie est proposée pour les problèmes d’IFS transitoires où différents intégrateurs temporels sont utilisés pour chaque sous-domaine: 2nd ordre schéma de Runge-Kutta pour le fluide et schéma de Newmark pour le solide. En imposant la continuité de la vitesse normale à l’interface, la méthode proposée peut assurer qu’il n’y a ni injection d’énergie ni dissipation d’énergie à l’interface. L’énergie de l’interface est donc nulle (aux erreurs de troncature près) durant toute la période de simulation numérique. Cette méthode de couplage assure donc que la simulation de couplage est numériquement stable en temps. Les expérimentations numériques montrent que le calcul converge en temps avec l’ordre de convergence minimal des schémas utilisés dans chaque sous-domaine. Cette méthode proposée est d’abord appliquée `a un problème de piston mono-dimensionnel. On vérifie sur ce cas qu’elle ne dégrade pas l’ordre de précision en temps des schémas utilisés. On effectue ensuite les études des phénomènes de propagation d’ondes de choc au travers de l’interface fluide-structure. Un excellent accord avec la solution analytique est observé dans les cas de teste de propagation d’onde en 1-D. Finalement, les exemples multi-dimensionnels sont présentés. Ses résultats sont comparés avec ceux obtenus par d’autres méthodes de couplage. / The Fluid-Structure Interaction (FSI) effects are of great importance for many multi-physical problems in academic researches as well as in engineering sciences. Various types of numerical simulation approaches may be used to investigate the FSI problems in order to get more reliable conception and to avoid unexpected disasters. In this work, the fluid sub-domain is simulated by a hybrid mesh-less method (SPH-ALE), and the structure is discretized by the Finite Element (FE) method. As the fluid is considered as a set of particles, one can easily track the fluid structure interface. An energy-conserving coupling strategy is proposed for transient fluid-structure interaction problems where different time integrators are used for each sub-domain: 2nd order Runge-Kutta scheme for the fluid and Newmark time integrator for the solid. By imposing a normal velocity constraint condition at the interface, this proposed coupling method ensures that neither energy injection nor energy dissipation will occur at the interface so that the interface energy is rigorously zero during the whole period of numerical simulation. This coupling method thus ensures that the coupling simulation shall be stable in time, and secondly, the numerical simulation will converge in time with the minimal convergence rate of all the time integrators chosen for each sub-domain. The proposed method is first applied to a mono-dimensional piston problem in which we verify that this method does not degrade the order of accuracy in time of the used time integrators. Then we use this coupling method to investigate the phenomena of propagation of shock waves across the fluidstructure interface. A good agreement is observed between the numerical results and the analytical solutions in the 1-D shock wave propagation test cases. Finally, some multi-dimensional examples are presented. The results are compared with the ones obtained by other coupling approaches.

Page generated in 0.1395 seconds