• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 50
  • 9
  • 8
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 167
  • 167
  • 63
  • 57
  • 50
  • 46
  • 39
  • 35
  • 34
  • 30
  • 26
  • 25
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Dopustiva singularna rešenja sistema gasne dinamike sa nepozitivnim pritiskom / Admissible singular solutions to gas dynamics systems with non-positive pressure

Ružičić Sanja 23 June 2020 (has links)
<p>Karakteristika hiperboličnih sistema zakona odrržanja je da čak i u slučaju glatkog po-četnog uslova re&scaron;enja uglavnom razvijaju prekide u konačnom vremena. Zbog toga se posmatraju slaba re&scaron;enja koja dati sistem zadovoljavaju u distributivnom smislu i mogu biti čak i neograničena &scaron;to se ispoljava kroz pojavu Dirakove delta funkcije u re&scaron;enju. U ovoj disertaciji se akcenat stavlja na analizu protoka sti&scaron;ljivog neviskoznog fluida koji ne menja pravac prilikom kretanja. Protok je opisan Ojlerovim sistemom iz gasne dinamike koji se sastoji iz zakona održanja mase, količine kretanja i energije, dok su karakteristike fluida određene konstitutivnim relacijama. U slučaju izentropskog ili izotermnog protoka sistem se svodi na zakone održanja mase i količine kretanja. Glatka re&scaron;enja takvog sistema automatski zadovoljavaju zakon održanja energije, dok prelaskom na slabu formulaciju dolazi do gubitka energije. Za predstavnike sistema gasne dinamike sa nepozitivnim pritiskom su uzeti sistem gasne dinamike bez pritiska i model za&nbsp; Čapliginov gas i njegova uop&scaron;tenja. Data su re&scaron;enja Rimanovih problema za te sisteme koja se mogu predstaviti kao kombinacija klasičnih elementarnih talasa i senka talasa koji aproksimiraju re&scaron;enja u obliku delta udarnih talasa i koji omogućavaju re&scaron;avanje početnog problema koji u početnom uslovu sadrži delta funkciju. Na primeru modela za uop&scaron;ten Čapliginov gas dokazano je da uslov prekompresivnosti nije jači od entropijskog uslova, &scaron;to je prvi takav rezultat u literaturi. Dalje su kori&scaron;ćena re&scaron;enja Rimanovih problema, kao i problema singularne interakcije i dat je algoritam za konstrukciju globalnog dopustivog približnog re&scaron;enja početnog problema za sistem gasne dinamike bez pritiska. Algoritam je univerzalan i ideja se može pro&scaron;iriti na veliki broj sistema zakona održanja i veliki broj početnih uslova. Diskutovane su promene energije u približnom re&scaron;enju i posle interakcija. Dobijeno približno re&scaron;enje slabo konvergira u prostoru Radonovih mera sa predznakom.</p> / <p>&nbsp;</p><p class="MsoNormal">A solutions to hyperbolic conservation laws systems starting out as smooth often develop singularities in a finite time. As a consequence, we are forced to look for weak solutions that satisfy the system in distributional sense. Those solutions are often unbounded, which is expressed through the appearance of Dirac delta function. In this theses we study a one-dimensional, compressible and inviscid flow of a fluid. The process is described by compressible Euler gas dynamics system which consists of conservation laws of mass, linear momentum and energy, while the characteristics of the fluid are described using constitutive relations. In the case of isentropic or isothermal flow the system reduces to conservation laws of mass and linear momentum. The energy is conserved for smooth solutions to such systems, but while passing to the weak formulation the energy is being dissipated. As representatives, we&nbsp; consider pressureless gas dynamics system, as well as Chaplygin gas model and its generalizations. We give the solutions to Riemann problems which can be represented as a combinations of classical elementary waves and shadow waves that approximate the solutions in the form of delta shock and allow as to solve the problems with initial data containing delta function. We use generalized Chaplygin gas model as demonstration of the fact that overcompressibility condition is not stronger that entropy condition, which is the first result of that kind in the literature. Further, we use solutions&nbsp; to the Riemann problems, as well as singular interaction problems to give the algorithm for construction of global admissible approximate solution to the pressureless gas dynamics initial value problem. The algorithm is universal and idea can be applied to large number of conservation laws systems and large number of initial data. We discuss&nbsp; energy changes in approximate solution and after the interactions. The constructed approximate solution converges in the space of signed Radon measures.</p><p><!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:TrackMoves/> <w:TrackFormatting/> <w:PunctuationKerning/> <w:ValidateAgainstSchemas/> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:DoNotPromoteQF/> <w:LidThemeOther>EN-US</w:LidThemeOther> <w:LidThemeAsian>X-NONE</w:LidThemeAsian> <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript> <w:Compatibility> <w:BreakWrappedTables/> <w:SnapToGridInCell/> <w:WrapTextWithPunct/> <w:UseAsianBreakRules/> <w:DontGrowAutofit/> <w:SplitPgBreakAndParaMark/> <w:DontVertAlignCellWithSp/> <w:DontBreakConstrainedForcedTables/> <w:DontVertAlignInTxbx/> <w:Word11KerningPairs/> <w:CachedColBalance/> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> <m:mathPr> <m:mathFont m:val="Cambria Math"/> <m:brkBin m:val="before"/> <m:brkBinSub m:val="&#45;-"/> <m:smallFrac m:val="off"/> <m:dispDef/> <m:lMargin m:val="0"/> <m:rMargin m:val="0"/> <m:defJc m:val="centerGroup"/> <m:wrapIndent m:val="1440"/> <m:intLim m:val="subSup"/> <m:naryLim m:val="undOvr"/> </m:mathPr></w:WordDocument></xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267"> <w:LsdException Locked="false" Priority="0" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Normal"/> <w:LsdException Locked="false" Priority="9" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="heading 1"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/> <w:LsdException Locked="false" Priority="39" Name="toc 1"/> <w:LsdException Locked="false" Priority="39" Name="toc 2"/> <w:LsdException Locked="false" Priority="39" Name="toc 3"/> <w:LsdException Locked="false" Priority="39" Name="toc 4"/> <w:LsdException Locked="false" Priority="39" Name="toc 5"/> <w:LsdException Locked="false" Priority="39" Name="toc 6"/> <w:LsdException Locked="false" Priority="39" Name="toc 7"/> <w:LsdException Locked="false" Priority="39" Name="toc 8"/> <w:LsdException Locked="false" Priority="39" Name="toc 9"/> <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/> <w:LsdException Locked="false" Priority="10" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Title"/> <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/> <w:LsdException Locked="false" Priority="11" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/> <w:LsdException Locked="false" Priority="22" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Strong"/> <w:LsdException Locked="false" Priority="20" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/> <w:LsdException Locked="false" Priority="59" SemiHidden="false" UnhideWhenUsed="false" Name="Table Grid"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/> <w:LsdException Locked="false" Priority="1" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 1"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 1"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 1"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/> <w:LsdException Locked="false" Priority="34" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/> <w:LsdException Locked="false" Priority="29" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Quote"/> <w:LsdException Locked="false" Priority="30" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 1"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 1"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 2"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 2"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 2"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 2"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 2"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 3"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 3"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 3"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 3"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 3"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 4"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 4"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 4"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 4"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 4"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 5"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 5"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 5"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 5"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 5"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 6"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 6"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 6"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 6"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 6"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/> <w:LsdException Locked="false" Priority="19" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/> <w:LsdException Locked="false" Priority="21" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/> <w:LsdException Locked="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/> <w:LsdException Locked="false" Priority="32" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/> <w:LsdException Locked="false" Priority="33" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Book Title"/> <w:LsdException Locked="false" Priority="37" Name="Bibliography"/> <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/> </w:LatentStyles></xml><![endif]--><!--[if gte mso 10]><style> /* Style Definitions */ table.MsoNormalTable{mso-style-name:"Table Normal";mso-tstyle-rowband-size:0;mso-tstyle-colband-size:0;mso-style-noshow:yes;mso-style-priority:99;mso-style-qformat:yes;mso-style-parent:"";mso-padding-alt:0in 5.4pt 0in 5.4pt;mso-para-margin-top:0in;mso-para-margin-right:0in;mso-para-margin-bottom:10.0pt;mso-para-margin-left:0in;line-height:115%;mso-pagination:widow-orphan;font-size:11.0pt;font-family:"Calibri","sans-serif";mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-fareast-font-family:"Times New Roman";mso-fareast-theme-font:minor-fareast;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi;}</style><![endif]--></p>
142

Fast Sweeping Methods for Steady State Hyperbolic Conservation Problems and Numerical Applications for Shape Optimization and Computational Cell Biology

Chen, Weitao 08 August 2013 (has links)
No description available.
143

On a novel soliton equation, its integrability properties, and its physical interpretation / En ny solitonekvation, dess integrabilitetsegenskaper, och dess fysikaliska tolkning

Fagerlund, Alexander January 2022 (has links)
In the present work, we introduce a never before studied soliton equation called the intermediate mixed Manakov (IMM) equation. Through a pole ansatz, we prove that the equation has N-soliton solutions with pole parameters governed by the hyperbolic Calogero-Moser system. We also show that there are spatially periodic N-soliton solutions with poles obeying elliptic Calogero-Moser dynamics. A Lax pair is given in the form of a Riemann-Hilbert problem on a cylinder. A similar Lax pair is shown to imply a novel spin generalization of the intermediate nonlinear Schrödinger equation. Some conservation laws for the IMM are proven. We demonstrate that the IMM can be written as a Hamiltonian system, with one of these conserved quantities as the Hamiltonian. Finally, a physical interpretation is given by showing that the IMM can be rewritten to describe a system of two nonlocally coupled fluids, with nonlinear self-interactions. / Vi presenterar en aldrig tidigare studerad solitonekvation som vi döper till ‘the intermediate mixed Manakov equation’ (ungefär ‘den mellanliggande kopplade Manakovekvationen’. Kortform: IMM). Genom en polansats bevisar vi att ekvationen har N-solitonlösningar där polparametrarna utgör ett hyperboliskt Calogero-Mosersystem. Vi visar också att det finns rumsligt periodiska N-solitonlösningar vars poler följer elliptisk Calogero-Moserdynamik. Ett Laxpar ges i form av ett Riemann-Hilbertproblem på en cylinder. Vi demonstrerar att ett liknande Laxpar leder till en ny spinngeneralisering av den s.k. INLS-ekvationen. Några bevarandelagar för IMM bevisas. Vi visar att IMM-ekvationen kan skrivas som ett Hamiltonskt system, där Hamiltonianen är en av våra tidigare bevarade storheter. Till sist ger vi en fysikalisk tolkning av vår ekvation genom att demonstrera hur den beskriver ett system av ickelokalt interagerande vätskor, med ickelinjära självinteraktioner.
144

Étude probabiliste de systèmes de particules en interaction : applications à la simulation moléculaire / Probabilistic study of interacting particle systems : applications to molecular simulation

Roux, Raphaël 06 December 2010 (has links)
Ce travail présente quelques résultats sur les systèmes de particules en interaction pour l'interprétation probabiliste des équations aux dérivées partielles, avec des applications à des questions de dynamique moléculaire et de chimie quantique. On présente notamment une méthode particulaire permettant d'analyser le processus de la force biaisante adaptative, utilisé en dynamique moléculaire pour le calcul de différences d'énergies libres. On étudie également la sensibilité de dynamiques stochastiques par rapport à un paramètre, en vue du calcul des forces dans l'approximation de Born-Oppenheimer pour rechercher l'état quantique fondamental de molécules. Enfin, on présente un schéma numérique basé sur un système de particules pour résoudre des lois de conservation scalaires, avec un terme de diffusion anormale se traduisant par une dynamique de sauts sur les particules / This work presents some results on stochastically interacting particle systems and probabilistic interpretations of partial differential equations with applications to molecular dynamics and quantum chemistry. We present a particle method allowing to analyze the adaptive biasing force process, used in molecular dynamics for the computation of free energy differences. We also study the sensitivity of stochastic dynamics with respect to some parameter, aiming at the computation of forces in the Born-Oppenheimer approximation for determining the fundamental quantum state of molecules. Finally, we present a numerical scheme based on a particle system for the resolution of scalar conservation laws with an anomalous diffusion term, corresponding to a jump dynamics on the particles
145

Etudes théorique et expérimentale de plasmas produits par laser en vue de leur application a l'analyse chimique des matériaux en environnement complexe / Theoritical and experimental studies of laser-induced plasmas for their application to chemical analyses of materials in complex environment

Clair, Guillaume 04 April 2011 (has links)
Ce travail présente une étude originale de l'interaction laser-matière en régime nanoseconde à l'aide d'une double approche expériences-modélisation numérique. L'approche expérimentale vise à caractériser les plasmas produits par laser et l'empreinte laissée par le faisceau laser sur la cible. L'approche numérique s'appuie sur un modèle 1D qui permet de décrire le chauffage de la cible par le laser, l'ablation de matière et la formation d'un plasma dans cette matière ablatée dûe à l'interaction avec le laser. Des comparaisons des résultats obtenus par les deux approches permettent d'évaluer le degré de précision des résultats issus du modèle. Ces comparaisons se limitent aux 100 premières nanosecondes d'expansion du plasma. Nous montrons ainsi que le modèle décrit assez bien l'écrantage du faisceau laser par le plasma, l'expansion du plasma et la propagation de l'onde de choc dans le gaz ambiant. De plus, les valeurs des seuils d'ablation et de formation du plasma sont calculées avec une bonne précision. En revanche, des écarts sont constatés pour la modélisation des processus d'interaction entre le laser et la cible. Le degré de précision du modèle est au final suffisamment bon pour nous permettre d'étudier précisément l'effet du gaz ambiant sur les propriétés et la dynamique du plasma. / This work provides an original study about laser-matter interaction in the nanosecond regime, based on a coupling between the experiments and the modelling. The experimental study provides a description of the dynamics of the laser produced plasmas. The modelling, based on a 1D numerical scheme, is aimed to describe the heating of the target by the laser pulse, the process of matter ablation and the formation of a plasma in this ablated material due to the interaction with the laser. The comparisons between both experimental and numerical results give the order of accuracy of the results obtained by modelling. These comparisons are limited to the first hundred nanoseconds of plasma expansion. We show that the plasma shielding, the plasma expansion and the propagation of the shockwave are well modelled. Furthermore, the values of both ablation and plasma formation threshold are accurately computed. However, many differences are observed in the results concerning the laser-target interaction process. Finally, the degree of accuracy of the model is sufficiently high to study precisely the background gas effet on both plasma dynamics and properties.
146

Desenvolvimento e teste de esquemas \"upwind\" de alta resolução e suas  aplicações em escoamentos  incompressíveis com superfícies livres / Development and testing of high-resolution upwind schemes and their applications in incompressible free surface flows

Queiroz, Rafael Alves Bonfim de 18 March 2009 (has links)
Neste trabalho são apresentados os resultados do desenvolvimento e teste de esquemas upwind de alta resolução para o controle da difusão numérica em leis de conservação gerais e problemas em dinâmica dos fluidos. Em particular, são derivados dois novos esquemas: o ALUS (Adaptive Linear Upwind Scheme) e o TOPUS (Third-Order Polynomial Upwind Scheme). Esses esquemas são testados no transporte de escalares, em equações 1D tipo convecção-difusão, em sistemas hiperbólicos 1D, nas equações de Euler 2D da dinâmica dos gases e nas equações de Navier-Stokes incompressíveis 2D/3D. Os esquemas são então associados a uma modelagem algébrica não linear para a simulação de problemas de escoamentos incompressíveis turbulentos 2D com/sem superfícies livres / In this work, results of the development and testing of high-resolution upwind schemes for controlling of the numerical diffusion for general conservation laws and fluid dynamics problems are presented. In particular, two new high-resolution upwind schemes are derived, namely, the ALUS (Adaptive Linear Upwind Scheme) and the TOPUS (Third-Order Polynomial Upwind Scheme). These schemes are tested in scalar transport, 1D convection-diffusion equations, 1D hyperbolic systems, 2D Euler equations of the gas dynamics, and in 2D/3D incompressible Navier-Stokes equations. The schemes are then combined with a nonlinear Reynolds stress algebraic equation model for the simulation of 2D incompressible turbulent flows with/without free surfaces
147

Um esquema \"upwind\" para leis de conservação e sua aplicação na simulação de escoamentos incompressíveis 2D e 3D laminares e turbulentos com superfícies livres / The \"upwind\" scheme to the conservation laws and their application in simulation of 2D and 3D incompressible laminar and turbulent flows with free surfaces

Kurokawa, Fernando Akira 26 February 2009 (has links)
Apesar de as EDPS que modelam leis de conservação e problemas em dinâmica dos fluídos serem bem estabelecidas, suas soluções numéricas continuam ainda desafiadoras. Em particular, há dois desafios associados à computação e ao entendimento desses problemas: um deles é a formação de descontinuidades (choques) e o outro é o fenômeno turbulência. Ambos os desafios podem ser atribuídos ao tratamento dos termos advectivos não lineares nessas equações de transporte. Dentro deste canário, esta tese apresenta o estudo do desenvolvimento de um novo esquema \"upwind\" de alta resolução e sua associação com modelagem da turbulência. O desempenho do esquema é investigado nas soluções da equação de advecção 1D com dados iniciais descontínuos e de problemas de Riemann 1D para as equações de Burgers, Euler e águas rasas. Além disso, são apresentados resultados numéricos de escoamentos incompressíveis 2D e 3D no regime laminar a altos números de Reynolds. O novo esquema é então associado à modelagem \'capa\' - \'epsilon\' da turbulência para a simulação numérica de escoamentos incompressíveis turbulentos 2D e 3D com superfícies livres móveis. Aplicação, verificação e validação dos métodos numéricos são também fornecidas / Althought the PDEs that model conservation laws and fluid dynamics problems are well established, their numerical solutions have presented a continuing challenge. In particular, there are two challenges associated with the computation and the understanding of these problems, namely, formation of shocks and turbulence. Both challenges can be attributed to the nonlinear advection terms of these transport equations. In this scenario, this thesis presents the study of the development of a new high-resolution upwind scheme and its association with turbulence modelling. The performance of the scheme is investigated by solving the 1D advection equation with discontinuous initial data 1D Riemann problems for Burgers, Euler and shallow water equations. Besides, numerical results for 2D and 3D incompressible laminar flows at high Reynolds number are presented. The new scheme is then associated with the \'capa - \' epsilon\' turbulence model for the simulation of 2D and 3D incompressible turbulent flows with moving free surfaces. Application, verification and validation of the numerical methods are also provided
148

Um esquema \"upwind\" para leis de conservação e sua aplicação na simulação de escoamentos incompressíveis 2D e 3D laminares e turbulentos com superfícies livres / The \"upwind\" scheme to the conservation laws and their application in simulation of 2D and 3D incompressible laminar and turbulent flows with free surfaces

Fernando Akira Kurokawa 26 February 2009 (has links)
Apesar de as EDPS que modelam leis de conservação e problemas em dinâmica dos fluídos serem bem estabelecidas, suas soluções numéricas continuam ainda desafiadoras. Em particular, há dois desafios associados à computação e ao entendimento desses problemas: um deles é a formação de descontinuidades (choques) e o outro é o fenômeno turbulência. Ambos os desafios podem ser atribuídos ao tratamento dos termos advectivos não lineares nessas equações de transporte. Dentro deste canário, esta tese apresenta o estudo do desenvolvimento de um novo esquema \"upwind\" de alta resolução e sua associação com modelagem da turbulência. O desempenho do esquema é investigado nas soluções da equação de advecção 1D com dados iniciais descontínuos e de problemas de Riemann 1D para as equações de Burgers, Euler e águas rasas. Além disso, são apresentados resultados numéricos de escoamentos incompressíveis 2D e 3D no regime laminar a altos números de Reynolds. O novo esquema é então associado à modelagem \'capa\' - \'epsilon\' da turbulência para a simulação numérica de escoamentos incompressíveis turbulentos 2D e 3D com superfícies livres móveis. Aplicação, verificação e validação dos métodos numéricos são também fornecidas / Althought the PDEs that model conservation laws and fluid dynamics problems are well established, their numerical solutions have presented a continuing challenge. In particular, there are two challenges associated with the computation and the understanding of these problems, namely, formation of shocks and turbulence. Both challenges can be attributed to the nonlinear advection terms of these transport equations. In this scenario, this thesis presents the study of the development of a new high-resolution upwind scheme and its association with turbulence modelling. The performance of the scheme is investigated by solving the 1D advection equation with discontinuous initial data 1D Riemann problems for Burgers, Euler and shallow water equations. Besides, numerical results for 2D and 3D incompressible laminar flows at high Reynolds number are presented. The new scheme is then associated with the \'capa - \' epsilon\' turbulence model for the simulation of 2D and 3D incompressible turbulent flows with moving free surfaces. Application, verification and validation of the numerical methods are also provided
149

Accurate Computational Algorithms For Hyperbolic Conservation Laws

Jaisankar, S 07 1900 (has links)
The numerics of hyperbolic conservation laws, e.g., the Euler equations of gas dynamics, shallow water equations and MHD equations, is non-trivial due to the convective terms being highly non-linear and equations being coupled. Many numerical methods have been developed to solve these equations, out of which central schemes and upwind schemes (such as Flux Vector Splitting methods, Riemann solvers, Kinetic Theory based Schemes, Relaxation Schemes etc.) are well known. The majority of the above mentioned schemes give rise to very dissipative solutions. In this thesis, we propose novel low dissipative numerical algorithms for some hyperbolic conservation laws representing fluid flows. Four different and independent numerical methods which give low diffusive solutions are developed and demonstrated. The first idea is to regulate the numerical diffusion in the existing dissipative schemes so that the smearing of solution is reduced. A diffusion regulator model is developed and used along with the existing methods, resulting in crisper shock solutions at almost no added computational cost. The diffusion regulator is a function of jump in Mach number across the interface of the finite volume and the average Mach number across the surface. The introduction of the diffusion regulator makes the diffusive parent schemes to be very accurate and the steady contact discontinuities are captured exactly. The model is demonstrated in improving the diffusive Local Lax-Friedrichs (LLF) (or Rusanov) method and a Kinetic Scheme. Even when employed together with accurate methods of Roe and Osher, improvement in solutions is demonstrated for multidimensional problems. The second method, a Central Upwind-Biased Scheme (CUBS), attempts to reorganize a central scheme such that information from irrelevant directions is largely reduced and the upwind biased information is retained. The diffusion co-efficient follows a new format unlike the use of maximum characteristic speed in the Local Lax-Friedrichs method and the scheme results in improved solutions of the flow features. The grid-aligned steady contacts are captured exactly with the reorganized format of diffusion co-efficient. The stability and positivity of the scheme are discussed and the procedure is demonstrated for its ability to capture all the features of solution for different flow problems. Another method proposed in this thesis, a Central Rankine-Hugoniot Solver, attempts to integrate more physics into the discretization procedure by enforcing a simplified Rankine-Hugoniot condition which describes the jumps and hence resolves steady discontinuities very accurately. Three different variants of the scheme, termed as the Method of Optimal Viscosity for Enhanced Resolution of Shocks (MOVERS), based on a single wave (MOVERS-1), multiple waves (MOVERS-n) and limiter based diffusion (MOVERS-L) are presented. The scheme is demonstrated for scalar Burgers equation and systems of conservation laws like Euler equations, ideal Magneto-hydrodynamics equations and shallow water equations. The new scheme uniformly improves the solutions of the Local Lax-Friedrichs scheme on which it is based and captures steady discontinuities either exactly or very accurately. A Grid-Free Central Solver, which does not require a grid structure but operates on any random distribution of points, is presented. The grid-free scheme is generic in discretization of spatial derivatives with the location of the mid-point between a point and its neighbor being used to define a relevant coefficient of numerical dissipation. A new central scheme based on convective-pressure splitting to solve for mid-point flux is proposed and many test problems are solved effectively. The Rankine-Hugoniot Solver, which is developed in this thesis, is also implemented in the grid-free framework and its utility is demonstrated. The numerical methods presented are solved in a finite volume framework, except for the Grid-Free Central Solver which is a generalized finite difference method. The algorithms developed are tested on problems represented by different systems of equations and for a wide variety of flow features. The methods presented in this thesis do not need any eigen-structure and complicated flux splittings, but can still capture discontinuities very accurately (sometimes exactly, when aligned with the grid lines), yielding low dissipative solutions. The thesis ends with a highlight on the importance of developing genuinely multidimensional schemes to obtain accurate solutions for multidimensional flows. The requirement of simpler discretization framework for such schemes is emphasized in order to match the efficacy of the popular dimensional splitting schemes.
150

Noncommutative manifolds and Seiberg-Witten-equations / Nichtkommutative Mannigfaltigkeiten und Seiberg-Witten-Gleichungen

Alekseev, Vadim 07 September 2011 (has links)
No description available.

Page generated in 0.1674 seconds