Spelling suggestions: "subject:"conserved quantity"" "subject:"onserved quantity""
1 |
Bi-Integrable and Tri-Integrable Couplings and Their Hamiltonian StructuresMeng, Jinghan 01 January 2012 (has links)
An investigation into structures of bi-integrable and tri-integrable couplings is undertaken. Our study is based on semi-direct sums of matrix Lie algebras. By introducing new classes of matrix loop Lie algebras, we form new Lax pairs and generate several new bi-integrable and tri-integrable couplings of soliton hierarchies through zero curvature equations. Moreover, we discuss properties of the resulting bi-integrable couplings, including infinitely many commuting symmetries and conserved densities. Their Hamiltonian structures are furnished by applying the variational identities associated with the presented matrix loop Lie algebras.
The goal of this dissertation is to demonstrate the efficiency of our approach and discover rich structures of bi-integrable and tri-integrable couplings by manipulating matrix Lie algebras.
|
2 |
Classification de systèmes intégrables en coordonnées cylindriques en présence de champs magnétiquesFournier, Félix 08 1900 (has links)
No description available.
|
3 |
Intégrabilité et superintégrabilité de deuxième ordre dans l'espace Euclidien tridimensionelAbdul-Reda, Hassan 02 1900 (has links)
L'article "A systematic search for nonrelativistic systems with dynamical symetries, Part I" publié il y a à peu près 50 ans a commencé une classification de ce qui est maintenant appelé les systèmes superintégrables. Il était dévoué aux systèmes dans l'espace Euclidien ayant plus d'intégrales de mouvement que de degrés de liberté. Les intégrales étaient toutes supposées de second ordre en quantité de mouvement. Dans ce mémoire, sont présentés de nouveaux résultats sur la superintégrabilité de second ordre qui sont pertinents à l'étude de la superintégrabilité d'ordre supérieur et de la superintégrabilité de systèmes ayant des potentiels vecteurs ou des particules avec spin. / The article "A systematic search for nonrelativistic systems with dynamical symetries, Part I" published about 50 years ago started the classification of what is now called superintegrable systems. It was devoted to systems in Euclidean space with more integrals of motion than degrees of freedom. The integrals were all assumed to be second order polynomials in the
particle momentum. Here we present some further results on second order superintegrability that are relevant for studies of higher order superintegrability and for superintegrability for systems with vector potentials or for particles with spin.
|
Page generated in 0.0681 seconds