• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 4
  • Tagged with
  • 25
  • 25
  • 13
  • 11
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Étude des processus élementaires impliqués en combustion à volume constant / Study of Elementary Processes Involved in Constant Volume Combustion

Er-Raiy, Aimad 14 December 2018 (has links)
La propagation de flammes turbulentes dans des milieux réactifs inhomogènes concerne un grand nombre d’applications pratiques, y compris celles qui reposent sur des cycles de combustion à volume constant. Les hétérogénéités de composition (richesse, température,dilution par des gaz brûlés, etc.) sont issues de plusieurs facteurs distincts tels que la dispersion du spray de gouttelettes de combustible et son évaporation, la topologie de l’écoulement ainsi que la présence éventuelle de gaz brûlés résiduels issus du cycle précédent. La structure des flammes partiellement prémélangées qui en résultent est significativement plus complexe que celles des flammes plus classiques de diffusion ou de prémélange. L’objectif de ce travail de thèse est donc de contribuer à l’amélioration de leur connaissance, en s’appuyant sur la génération et l’analyse de base de données de simulations numériques directes ou DNS (Direct Numerical Simulation). Celles-ci sont conduites avec le code de calcul Asphodele qui est basé sur l’approximation de faible nombre de Mach. Le combustible de référence retenu est l’iso-octane.La base de données est structurée suivant cinq paramètres qui permettent de caractériser l’écoulement turbulent ainsi que l’hétérogénéité de composition du milieu réactif. Dans un premier temps, des configurations bidimensionnelles ont été considérées en raison du coût élevé induit par la description détaillée de la cinétique chimique. L’étude des ces différents cas de calcul a permis de mettre en lumière plusieurs mécanismes fondamentaux de propagation dans les milieux hétérogènes en composition. Une réduction significative des coûts de calcula pu ensuite être obtenue grâce au développement d’un modèle chimique simplifié optimisé.Son utilisation a permis d’étendre les analyses à de / The propagation of turbulent flames in non-homogeneous reactive mixtures of reactants concerns a large number of practical applications, including those based on constant volume combustion cycles. The composition heterogeneities (equivalence ratio, temperature, dilution by burnt gases, etc.) result from several distinct factors such as the dispersion of the spray of fuel droplets and its evaporation, the flow field topology as well as the possible presence of residual burnt gases issued from the previous cycle. The resulting partially premixed flames structure is significantly more complex than the one of more conventional diffusion or premixed flames.The aim of this thesis work is therefore to contribute to the improvement of their understanding, by proceeding to the generation and analysis of a new set of direct numerical simulations (DNS) databases. The present computations are performed with the low-Mach number DNS solver Asphodele. The database is structured according to five parameters that characterize the turbulent flow as well as the composition heterogeneity of the reactive mixture. First, because of the high numerical costs induced by the detailed description of chemical kinetics, two-dimensional configurations were considered. The study of these various simulations highlights several fundamental mechanisms of flame propagation in heterogeneous mixtures. Then, a significant computational cost saving has been achieved through the development of an optimized simplified chemistry model. The use of the latter allowed to overcome the major bottleneck of high CPU costs related to chemical kinetics description and thus to extend the analysis to three-dimensional configurations. Some of the conclusions obtained previously were reinforced.
22

Étude expérimentale de la combustion à volume constant pour la propulsion aérobie : influence de l'aérodynamique et de la dilution sur l'allumage et la combustion / Experimental Study of Constant-Volume Combustion for Air-Breathing Propulsion : Influence of Aerodynamics and Dilution on Ignition and Combustion

Michalski, Quentin 29 April 2019 (has links)
Les turbomachines actuelles ont atteint un niveau de maturité technique très élevé. De nouvelles architectures reposant sur des cycles thermodynamiques basés sur une combustion à gain de pression, comme la combustion à volume constant (CVC), ont le potentiel d’augmenter leur efficacité. Dans cette étude,une solution qui repose sur l’intégration dans une turbomachine de chambres de combustion à volume constant sans piston (CVCSP) est considérée. Les objectifs de ces travaux de thèse sont doubles : dans un premier temps de développer et de caractériser extensivement un nouveau dispositif (CV2) dédié à la Combustion à volume constant sans piston sur un cas de référence et, dans un second temps, de proposer à travers plusieurs études, une analyse de l’influence de l’aérodynamique et de la dilution sur les processus d’allumage et, plus généralement de combustion. Le dispositif CV2 permet la combustion aérobie en allumage commandé d’un mélange de propane ou de n-décane, injecté directement dans la chambre. Un point de référence est caractérisé en détail via : des mesures de champs de vitesse par PIV, de chimiluminescence pendant la combustion, une analyse 0D développée dans cette étude. La caractérisation détaillée de ce point de référence montre que le dispositif CV2 reproduit correctement une combustion à volume constant turbulente dans un mélange faiblement hétérogène en température et stratifié en composition, et ce sur un nombre de cycles permettant d’établir une convergence statistique raisonnable. Ces diagnostics et analyses sont employés dans 2 cas d’études pour caractériser successivement : l’influence de l’aérodynamique, via une variation de l’instant d’allumage, l’influence des gaz brûlés résiduels sur la combustion en allumage commandé et la stabilité cyclique, via une variation de la pression d’échappement.Dans un fonctionnement sans balayage, on montre que cette variabilité cyclique est liée au premier ordre à la variation de la dilution en gaz brûlé résiduel du mélange et à la vitesse locale. On montre notamment que, pour un mélange donné, il existe une corrélation statistique entre une vitesse statistique limite et la probabilité d’allumage moyenne. Pour représenter l’effet de pression dans un plénum en amont d’une turbine, on réalise une étude paramétrique sur la pression d’échappement. La dilution résultante, croissant avec la pression d’échappement, diminue la vitesse fondamentale de flamme et ralentit donc la combustion. Les niveaux de températures des gaz brûlés résiduels résultent des échanges de chaleur qui ont lieu sur toute la durée du cycle, de l’allumage du cycle N à celui du cycle N+1 suivant. Des extrapolations sur des cycles à température de paroi plus élevée et à échappement plus court montrent que l’adiabaticité du cycle est améliorée (de 20 %) et que l’effet de dilution en température est alors favorable à une vitesse de flamme turbulente qui est alors plus élevée. Un phénomène d’allumage par gaz brûlé résiduel est observé sur certains cycles de combustion. Ce phénomène est caractérisé dans des conditions favorables, i.e. faible richesse (0.66), allumage tardif et cycle plus court. Lors d’un allumage par gaz brûlés résiduels, un noyau de flamme se développe dans les zones présentant des gaz brûlés résiduels chauds et à basse vitesse autour du jet d’admission et se propage ensuite au reste du mélange identiquement à celui qui serait généré par allumage commandé.Ce travail prend place dans le cadre de la chaire industrielle CAPA sur la combustion alternative pour la propulsion aérobie financée par SAFRAN Tech, MBDA et l’ANR. / Current turbomachines have reached a very high level of technical maturity. Thermodynamic cycles based on pressure-gain combustion, such as constant volume combustion (CVC), feature a clear potential for efficiency improvement. The present study considers the integration in a turbomachine of piston-lessCVC chambers. The thesis work is twofold. First, a new experimental setup (CV2) dedicated to cyclic piston-less CVC is developed and thoroughly characterized on a reference operating point. Second, the influence of the aerodynamics and dilution on the processes of ignition and, in a larger sense, on combustion is discussed through dedicated studies. The CV2 device allows for the spark-ignited air-breathing combustion of a mixture of either propane orn-decane, directly injected into the chamber. A reference condition is characterized in details using: PIV velocity field measurements, chemiluminescence of combustion and a 0D modeling of the device. This detailed characterization evidenced that the CV2 combustion chamber successfully replicates, on a number of cycles allowing a reasonable statistical convergence, a turbulent deflagrative constant-volume combustion in a mixture stratified in composition. Those diagnostics and analyses are applied to 2 cases of study to characterize successively : the influence of the aerodynamics, through a variation of the ignition timing, the influence of the residual burnt gases on spark-ignited combustion and the cyclic stability, through a variation of the exhaust backpressure.Operating the device without scavenging of the combustion chamber, we show that the cyclic variability correlates strongly with both the variation of residual burnt gases dilution and the local velocity. Particularly, we show that for a given mixture, a correlation exists between a statistical velocity limit and the average probability of ignition. The effect of a plenum backpressure upstream of a turbine, downstream of the combustion chamber, is simulated by varying the exhaust system backpressure. The resulting dilution, which increases with the exhaust backpressure, diminishes the fundamental flame velocity of the mixture and slows down the combustion. The residual burnt gases temperature results from the integrated heat exchanges that happen during the total cycle duration starting from the end of combustion of cycle N, to the ignition of cycle N+1. Enhanced cycles, with an increased wall temperature and reduced exhaust duration, are extrapolated by 0D analysis. Those cycles evidence a reduction of the cumulated heat exchanges of up to 20 %. The resulting dilutionis more favorable to higher turbulent flame velocity thus to shorter combustion duration. A phenomenon of ignition induced by the residual burnt gases is observed on certain combustion cycles. This phenomenon is characterized in favorable conditions, i.e. fuel-lean equivalence ratio (0.66), late ignition and shortcycles. During an ignition by residual burnt gases, a flame kernel is ignited in areas where the still hot residuals burnt gases meet fresh gases in low-velocity areas around the intake jet. The ignition kernel then propagates to the rest of the mixture in a similar manner as if it was spark-ignited.This work is part of the CAPA Chair research program on Alternative Combustion modes for Air-breathing Propulsion supported by SAFRAN Tech, MBDAFrance and ANR (French National Research Agency).
23

Characterization of a Rotating Detonation Engine with an Air Film Cooled Outer Body

Chriss, Scott Llewellyn 10 August 2022 (has links)
No description available.
24

Coupled Dynamic Analysis of Flow in the Inlet Section of a Wave Rotor Constant Volume Combustor

Smith, Keith Cameron 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A wave rotor constant volume combustor (WRCVC) was designed and built as a collaborative work of Rolls Royce LibertyWorks, Indiana University-Purdue University at Indianapolis (IUPUI), and Purdue University, and ran experimental tests at Purdue's Zucrow Laboratories in 2009. Instrumentation of the WRCVC rig inlet flow included temperature and pressure transducers upstream of the venturi and at the fuel delivery plane. Other instrumentation included exhaust pressures and temperatures. In addition, ion sensors, dynamic pressure sensors, and accelerometers were used to instrument the rotating hardware. The rig hardware included inlet guide vanes directly in front of the rotating hardware, which together with concern for damage potential, prevented use of any pressure transducers at the entrance to the rotor. For this reason, a complete understanding of the conditions at the WRCVC inlet is unavailable, requiring simulations of the WRCVC to estimate the inlet pressure at a specific operating condition based on airflow. The operation of a WRCVC rig test is a sequence of events over a short time span. These events include introduction of the main air flow followed by time-sequenced delivery of fuel, lighting of the ignition source, and the combustion sequence. The fast changing conditions in the rig inlet hardware make necessary a time-dependent computation of the rig inlet section in order to simulate the overall rig operation. The chosen method for computing inlet section temperature and pressure was a time-dependent lumped volume model of the inlet section hardware, using a finite difference modified Euler predictor-corrector method for computing the continuity and energy equations. This is coupled with perfect gas prediction of venturi air and fuel flow rates, pressure drag losses at the fuel nozzles, pressure losses by mass addition of the fuel or nitrogen purge, friction losses at the inlet guide vanes, and a correlation of the non-dimensional flow characteristics of the WRCVC. The flow characteristics of the WRCVC are computed by varying the non-dimensional inlet stagnation pressure and the WRCVC's operational conditions, assuming constant rotational speed and inlet stagnation temperature. This thesis documents the creation of a computer simulation of the entire WRCVC rig, to understand the pressure losses in the inlet system and the dynamic coupling of the inlet section and the WRCVC, so that an accurate prediction of the WRCVC rotor inlet conditions can be computed. This includes the computational development of the WRCVC upstream rig dynamic model, the background behind supporting computations, and results for one test sequence. The computations provide a clear explanation of why the pressures at the rotor inlet differ so much from the upstream measured values. The pressure losses correlate very well with the computer predictions and the dynamic response tracks well with the estimation of measured airflow. A simple Fortran language computer program listing is included, which students can use to simulate charging or discharging of a container.
25

Flexible polyhedra : exploring finite mechanisms of triangulated polyhedra

Li, Iila Jingjiao January 2018 (has links)
In a quest to design novel deployable structures, flexible polyhedra provide interesting insights. This work follows the discovery of flexible polyhedra and aims to make flexible polyhedra more useful. The dissertation describes how flexible polyhedra can be made. The flexible polyhedra first considered in this dissertation have a rotational degree of freedom. The range of this rotational movement is measured and maximised in this work by numerical maximisation. All polyhedra are established computationally: an iterative solution method is used to find vertex coordinates; several clash detecting methods are described to define whether each rotational position of a flexible polyhedron is physically possible; then a range of motion is defined between occurrences of clashes at the two ends; finally, an optimisation tool is used to maximise the range of motion. By using these tools, the range of motion of two types of simplest flexible polyhedra are maximised. The first type is a series of flexible polyhedra generalised from the Steffen flexible polyhedron. The range of motion of this type is improved to double that of Steffen’s original, from 27° to 59°. Another type of flexible polyhedron is expanded from a model provided by Tachi. Based on the understanding of Steffen’s flexible polyhedron, optimisation parameters are carefully given. This new type has achieved a wider range of motion, so now the range of motion of flexible polyhedron is tripled to 80°. After enlarging the range of motion of the degree of freedom in the 1-dof systems, the dissertation found multiple degrees of freedom in one polyhedron. The multiple mechanisms can be even repetitive, so that an n-dof polyhedron is found. A polyhedron of two degrees of freedom is first presented. Then, a unit cell for any number of mechanisms is found. As a repetitive structure, a 3-dof polyhedron is presented. Finally, this work presents the possibility of configuring a flexible polyhedral torus and a closed polyhedral surface that is able to flex without the need to stop.

Page generated in 0.076 seconds