• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 15
  • 13
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 120
  • 120
  • 28
  • 25
  • 24
  • 22
  • 21
  • 19
  • 15
  • 14
  • 14
  • 13
  • 13
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Integrity of Geosynthetic Elements of Waste Containment Barrier Systems Subject to Seismic Loading

January 2011 (has links)
abstract: A method for evaluating the integrity of geosynthetic elements of a waste containment system subject to seismic loading is developed using a large strain finite difference numerical computer program. The method accounts for the effect of interaction between the geosynthetic elements and the overlying waste on seismic response and allows for explicit calculation of forces and strains in the geosynthetic elements. Based upon comparison of numerical results to experimental data, an elastic-perfectly plastic interface model is demonstrated to adequately reproduce the cyclic behavior of typical geomembrane-geotextile and geomembrane-geomembrane interfaces provided the appropriate interface properties are used. New constitutive models are developed for the in-plane cyclic shear behavior of textured geomembrane/geosynthetic clay liner (GMX/GCL) interfaces and GCLs. The GMX/GCL model is an empirical model and the GCL model is a kinematic hardening, isotropic softening multi yield surface plasticity model. Both new models allows for degradation in the cyclic shear resistance from a peak to a large displacement shear strength. The ability of the finite difference model to predict forces and strains in a geosynthetic element modeled as a beam element with zero moment of inertia sandwiched between two interface elements is demonstrated using hypothetical models of a heap leach pad and two typical landfill configurations. The numerical model is then used to conduct back analyses of the performance of two lined municipal solid waste (MSW) landfills subjected to strong ground motions in the Northridge earthquake. The modulus reduction "backbone curve" employed with the Masing criterion and 2% Rayleigh damping to model the cyclic behavior of MSW was established by back-analysis of the response of the Operating Industries Inc. landfill to five different earthquakes, three small magnitude nearby events and two larger magnitude distant events. The numerical back analysis was able to predict the tears observed in the Chiquita Canyon Landfill liner system after the earthquake if strain concentrations due to seams and scratches in the geomembrane are taken into account. The apparent good performance of the Lopez Canyon landfill geomembrane and the observed tension in the overlying geotextile after the Northridge event was also successfully predicted using the numerical model. / Dissertation/Thesis / Ph.D. Civil and Environmental Engineering 2011
22

Desenvolvimento de modelo hipoplástico aplicável a carregamentos cíclicos. / Development of a hypoplastic model applicable to cyclic loading.

Marcelo Saad Taulois da Costa 27 June 2017 (has links)
Modelos constitutivos são relações matemáticas entre grandezas físicas que buscam descrever o comportamento dos materiais quando submetidos a ações externas. A hipoplasticidade é um modelo constitutivo desenvolvido para solos a partir de uma modificação da equação hipoelástica. Este modelo tem como principais características a existência de uma única equação constitutiva e o seu caráter não linear, o que lhe confere a propriedade de introduzir deformações irreversíveis desde o início das ações externas. Neste trabalho são estudados dois novos modelos desenvolvidos com o objetivo de melhorar as previsões para carregamentos cíclicos. O primeiro, denominado hipoplasticidade estendida, é caracterizado pela introdução de superfícies de memória e uma nova equação constitutiva específica para o recarregamento. O segundo modelo, a hipoplasticidade cíclica, é uma modificação deste último onde são introduzidos fatores capazes de modificar as superfícies de memória. Os novos modelos são primeiramente aplicados em situações teóricas para verificar sua aplicabilidade. Posteriormente, utilizando dados experimentais, é feita sua calibração e aplicação para então compararem-se as previsões teóricas com os resultados experimentais. Verifica-se que os novos modelos contemplam avanços significativos na previsão do comportamento dos solos sob carregamentos cíclicos. Para permitir um número maior de simulações foi desenvolvida uma planilha eletrônica com a capacidade de representar quantos ciclos sejam desejados, efetuar a alteração dos parâmetros do solo durante a calibração do modelo de maneira fácil e rápida, assim como visualizar para cada um dos intervalos se foi utilizada a equação geral ou a específica do recarregamento. / Constitutive models are mathematical relationships between physical quantities that approximate the behavior of materials when subjected to external actions. Hypoplasticity is a constitutive model developed for soils from a modification of the hypoelastic equation. The main features of this model are the existence of a unique constitutive equation and its nonlinear character, which gives it the property of introducing irreversible deformation from the beginning of external actions. In this work two new models developed in order to improve the predictions of cyclic loading are studied. The first one, which is called extended hypoplacity, has as its main feature the addition of a memory surface and the introduction of a new equation specific for reloading. The second model, cyclic hypoplasticity, which is a modification of this last one, is characterized by the introduction of factors that are capable of modifing the memory surfaces. The new models are first checked in theoretical situations to verify their applicability. Subsequently, using experimental data, the models are calibrated, applied, and then compared to experimental results. The new models include significant advances in predicting soil behavior under cyclic loading. To allow a larger number of simulations, a spreadsheet was developed with the following abilities: simulate as many cycles as are desired; easy to change soil\'s parameters during the calibration phase; and display for each of the intervals which of the equations was used.
23

CJS-RE : a hierarchical constitutive model for rammed earth / CJS-RE : un modèle constitutif hiérarchisée pour le matériau pisé

Adi Riyono, Winarputro 06 October 2017 (has links)
Le pisé est une technique constructive vernaculaire consistant à compacter successivement des couches de terre humide entre des coffrages. Cette technique, présente dans le monde entier, l'est en particulier en France dans la région Auvergne-Rhône-Alpes. Comme il n'existe pas de réglementation attachée à cette technique constructive, il est très difficile pour des propriétaires de réparer leur bien. Le développement de cette technique pour de nouveaux projets souffre aussi de cette absence alors qu'elle répond à certains enjeux posés par le Développement Durable. Le travail présenté ici fait partie intégrante du projet national PRIMATERRE dédié à l'étude des constructions impliquant de la terre. Une loi de comportement élasto-plastique est développée dans ce travail pour modéliser le comportement du pisé. Elle s'appuie sur une approche hiérarchisée de la modélisation en lien avec le nombre d'essais disponibles pour identifier les paramètres de modèle mais aussi en lien avec la complexité de phénomènes à prendre en compte. Ce modèle s'inspire d'un modèle pré-existant, CJS, développé en géotechnique pour modéliser le comportement mécanique des matériaux granulaires. Une adaptation s'est imposée pour prendre en compte les spécificités du comportement mécanique du pisé qui possède de nombreuses similitudes avec celui des matériaux quasi-fragiles. Deux niveaux de modélisation pour le modèle de comportement appelé CJS-RE sont présentés, pouvant être utilisés dans un contexte de sollicitation monotone. Le premier niveau CJS-RE1 est un modèle élastique parfaitement plastique alors que le second niveau CJS-RE2 est un modèle élasto-plastique à écrouissage isotrope. Deux mécanismes de déformation plastique sont présents, l'un lié aux phénomènes purement déviatoires et l'autre aux phénomènes de traction. La validation du modèle a été entreprise sur la base de la simulation d'essais en laboratoire de compression diagonale et de chargement latéral (pushover) sur des murets, issus de la littérature. Le niveau CJS-RE1 a été capable de capturer les phénomènes essentiels issus de ces deux tests et peut être utilisé comme une première approches des problèmes. Le niveau CJS-RE2 a permis de retrouver plus précisément le comportement non linéaire du pisé sur une large gamme de déformations, que ce soit dans l'essai de compression diagonale ou dans le pushover. Enfin, la prise en compte d'interfaces entre les couches dans la modélisation semble constituer une approche surdimensionnée lorsque seule la résistance d'un système constitué en pisé est recherchée. Cependant, parce qu'elles apportent une certaine ductilité au système dans la modélisation, elles peuvent être utilisées lorsque des résultats plus détaillés sont attendus. / Rammed earth is a vernacular building technique consisting in compacting successively layers of moist earth within formworks. This technique is present worldwide and in particular in the region Auvergne-Rhône-Alpes in France. As no regulation exists for rammed earth structures in France, the owners of such structures are helpless at the time when repairing damages appearing in any aging heritage structures. Moreover, this lack of regulation tends to slow down the development of such a constructive solution in new projects though this technique answers many of the issues raised by the sustainable development. The work presented herein is part of the national research project PRIMATERRE devoted to the study of construction building involving earth. Herein, an elasto-plastic constitutive law is developed for modeling the behavior of rammed earth. It is based on a hierarchical approach of the modeling in relation to the information available to identify the set of model parameters and the refinement of phenomena to be modelled. This model was adapted from a pre-existing CJS model used in advanced foundation engineering for the modelling of granular soils. The necessary adaptation of some mechanisms of the model in the context of rammed earth material which holds the characteristics of a quasi-brittle material is highlighted. Two levels for the model denoted CJS-RE which can be used in the context of monotonous loadings are presented herein. The first level is a simple elastic perfectly plastic model (CJS-RE1) and the second model is an elasto-plastic model with an isotropic hardening (CJS-RE2). Two mechanisms of plastic deformation are involved, one related to purely deviatoric phenomena and one related to tensile phenomena. The validation of the model was performed based on different sets of actual tests including diagonal compression tests and pushover tests on wallets. The simple elasto-plastic model CJS-RE1 was able to capture some basic features for these two tests and may be used for a first estimate of the system resistance. The more sophisticated model CJS-RE2 was found better to retrieve the nonlinear behavior of rammed earth over a larger range of deformations throughout both a diagonal compression test and a pushover test. Finally, the modelling of interfaces between layers of earth seems oversized when the resistance of the system is investigated. However, since they may influence the simulated ductility of the system, they may be used to model the behavior of rammed earth system more precisely.
24

Biomechanics of blunt liver injury: relating internal pressure to injury severity and developing a constitutive model of stress-strain behavior

Sparks, Jessica L. 06 August 2007 (has links)
No description available.
25

Complex Unloading Model for Springback Prediction

Sun, Li 17 March 2011 (has links)
No description available.
26

Modeling of Mechanical Behavior of Structural Masonry

Mohammadi, Mohammadreza January 2018 (has links)
Masonry is an orthotropic material that exhibits distinct directional properties due to the existence of mortar joints acting as planes of weakness. Therefore, a constitutive model employed in the numerical analysis should be capable of describing the anisotropic behavior. The main objective of this research is to implement a macroscopic failure criterion which describes the failure conditions in structural masonry. For this purpose, a comprehensive framework is outlined for modelling of the mechanical behaviour of structural masonry. In this framework, the anisotropic material properties are described using the microstructure tensor approach (Pietruszczak and Mroz, 2001). Then, a mathematical formulation defining the conditions at failure is discussed. The formulation contains several material parameters as well as material functions that describe the anisotropic behaviour. The identification procedure for these functions is outlined and is verified using the experimental tests conducted by Page (1983). Later, an extensive numerical study, including a set of numerical simulations of biaxial compression-tension and biaxial compression tests for different bedding plane orientations, is conducted to evaluate the performance of the proposed macroscopic failure criterion. In the last part of the thesis, some 3D finite element simulations of a shaking table test are performed involving a reduced scale model of four storey masonry building subjected to seismic excitation. A linear dynamic analysis, in which the proposed macroscopic failure criterion is incorporated through the UMAT subroutine, is carried out to assess the plastic admissibility of the stress field. The results including the distribution of the value of the failure function are then compared with the crack pattern in the experimental test. / Thesis / Master of Applied Science (MASc)
27

Simulation of the plug-assisted thermoforming of polypropylene using a large strain thermally coupled constitutive model

O'Connor, C.P.J., Martin, P.J., Sweeney, John, Menary, G., Caton-Rose, Philip D., Spencer, Paul E. 13 February 2013 (has links)
No / Thermoforming is widely employed in industry for the manufacture of lightweight, thin-walled products from pre-extruded plastic sheet and its largest application is in packaging. Over many years attempts have been made to simulate the process and thereby exploit modern computational tools for process optimisation. However, progress in this area has been greatly hampered by insufficient knowledge of the response of polymer materials under thermoforming conditions and an inability to measure this and other processing phenomena accurately. In recent years some address has been made to these problems through advances in measurement technologies, and in particular, the development of high speed, high strain, biaxial testing machines that are designed to replicate the conditions in thermoforming processes. In this work the development of an advanced finite element-based thermoforming process simulation is presented. At its heart is a sophisticated large strain thermally coupled (LSTC) material model for polypropylene, which has been developed after several years of research and is founded directly on biaxial test results at elevated temperatures. This material model has been demonstrated to provide an excellent fit to the biaxial data and to offer a very stable computational platform for the process simulation.The performance of the working simulation was validated through comparison with matching experimental test results, and this enabled investigation of the sensitivity of the process output (in the form of part wall thickness distribution) to changes in a range of other processing parameters. This work confirmed that the process is most sensitive to the parameters controlling plug/sheet contact friction. Heat transfer parameters were also shown to be significant and the requirement for the model to be fully thermo-mechanically coupled has been clearly established.
28

Cyclic Uniaxial Constitutive Model For Steel Reinforcement

Kim, Se-Hyung 31 January 2015 (has links)
Reinforced Concrete (RC) structures are common in earthquake-prone areas. During an earthquake, the steel reinforcement is subjected to cyclic strain histories which lead to inelastic response. In the case of rare, strong earthquakes, inelastic buckling and even rupture due to low-cycle fatigue can also occur. The understanding and characterization of the performance of RC structures under earthquake hazards requires the accurate simulation of the inelastic hysteretic behavior of steel reinforcement by means of appropriate constitutive models. Several uniaxial material models have been developed for reinforcing steel. Existing material models sacrifice efficiency for accuracy or vice versa. Conceptually simple and numerically efficient models do not accurately capture the hysteretic response and ignore rupture or buckling. On the other hand, more refined material models are characterized by iterative stress update procedures which can significantly increase the computational cost of an analysis. Additionally, experience suggests that refined models attempting for the effect of inelastic buckling tend to lead to numerical convergence problems in the stress update procedure. The goal of the present study is the formulation and implementation of an accurate and computationally efficient constitutive model for steel reinforcement under cyclic loading. A previously developed model, capable of capturing the inelastic hysteretic response of reinforcing steel in the absence of buckling and rupture, is used as a starting point in this study. The model is enhanced by replacing its original, iterative stress update procedure with an equally accurate, non-iterative one. Additionally, the model is enhanced to capture the effects of inelastic buckling and of rupture. The accuracy of the model and the efficiency of the non-iterative stress update algorithm are demonstrated by means of validation analyses. / Master of Science
29

Mechanical Investigation of Damage in Ligaments

Guo, Zheying 26 May 2011 (has links)
Sprains are the most common injuries to ligamentous tissues. They are classified as first-degree, second-degree, or third-degree sprains depending upon their severity. First-degree sprains are the result of over-stretching of ligaments. Second-degree sprains involve partial tears of the ligaments. In third-degree sprains, the ligaments are completely torn. Although first- and second-degree sprains are not as severe as third-degree sprains, they occur more frequently. The mechanisms leading to sprains are still not well understood. Therefore, histo-mechanical experiments and theoretical studies are needed to advance our current knowledge on the etiology of sprains. In the first part of this study, a structurally-based constitutive equation is proposed to simulate the damage evolution process in ligaments. The ligament is modeled as a bundle of crimped collagen fibers that are assumed to be oriented along one direction, the physiological loading direction. The gradual straightening of collagen fibers determines the nonlinearity in the toe region of the tensile axial stress-strain curve. Straight collagen fibers behave as a linear elastic material. The gradual damage of collagen fibers determines the nonlinearity in the failure region of the tensile axial stress-strain curve. The parameters in the constitutive equation are estimated by curve fitting experimental data on rat medial collateral ligaments (MCLs) published in the biomechanics literature. In the second part of this study, mechanical experiments are performed in order to identify and quantify damage in ligamentous tissues. MCLs, which are harvested from Sprague-Dawley (SD) rats, are subjected to displacement controlled tensile tests. Specifically, the ligaments are stretched to consecutively increasing stretch values until their complete failure occurs. The elongation of the toe region and decrease in tangent modulus of the linear region of the collected stress-strain data are analyzed and two significantly different damage threshold strains are determined. The effect of age and skeletal maturation on the damage evolution process is also investigated by performing mechanical tests on MCLs isolated from two age groups of SD rats. In the third part of this study, scanning electron microscopy (SEM) is used to determine variations in the microstructure of ligaments that are associated with the elongation of the toe region and decrease in tangent modulus of the linear region of the stress-strain curve. MCLs from SD rats are subjected to different threshold strains that produce damage and, subsequently, examined using SEM. By comparing the morphology of collagen fibers and fibrils in undamaged and damaged MCLs, the microscopic variations induced by strain are determined and correlated to the observed macroscopic mechanical damage. / Ph. D.
30

Analytical Models For Stress-Strain Response Of Fiber-Reinforced Soil And Municipal Solid Waste

Chouksey, Sandeep Kumar 07 1900 (has links)
The present thesis proposes model for the analyses of stress-strain response of fiber reinforced soil and municipal solid waste (MSW). The concept of reinforcing soils by introducing tension resisting elements such as fibers is becoming widely accepted. Fiber inclusions are found to improve the post-peak behavior of the soil. Evaluation of the stress-strain response of the fiber-reinforced soil indicates that mobilization of the fiber tension generally requires a strain level higher than that corresponding to the peak strength of unreinforced soil. Further, geotechnical engineering properties of MSW such as compressibility, shear strength and stiffness are of prime importance in design and maintenance of landfills. It is also referred in literature that MSW tends to behave as fiber-reinforced soil due to the presence of various types of wastes in its matrix. However, it is not well understood how the stress-strain and strength characteristics vary with time as the biodegradation of waste continues in the landfill. Based on the experimental observations, in this thesis, an attempt is made for developing generalized constitutive models based on the critical state soil mechanics frame work for fiber reinforced soils and municipal solid waste. The proposed models consider the fiber effect in fiber reinforced soil and, time dependent mechanical and biodegradation effects in case of municipal solid waste, respectively. The proposed models are able to capture the stress-strain and pore water pressure response in both the cases. For better understanding, the present thesis is divided into following seven chapters. Chapter 1 is an introductory chapter, in which the need for use of the constitutive models is presented. Further, the organization of thesis is also presented. Chapter 2 presents a brief description of the available studies in the literature on fiber-reinforced soils and municipal solid waste. Various studies on fiber-reinforced soil included experimental results (both laboratory and field) and modeling methods. Experiments on fiber-reinforced soils were mainly carried out with triaxial compression tests, unconfined compression tests, direct shear tests, one dimensional consolidation tests, etc. Force equilibrium model, limit equilibrium model, statistical theory, regression based models are some of the models available in the literature for quantifying the strength of the fiber-reinforced soil. Further, various studies with regard to the engineering properties of municipal solid waste and their characteristic properties available in the literature are presented. They include different models proposed by various researchers for the prediction of stress-strain response, time dependent behavior and load settlement analysis of the municipal solid waste. Finally, based on the literature review, the scope and objectives of the thesis are presented at the end. Chapter 3 describes various types of soils, properties of soils and fibers used in the present study. A detailed description of the sample preparation and methods adopted in the experimental program are presented in this chapter. Chapter 4 presents the experimental results of triaxial compression tests and one dimensional consolidation test carried out on fiber-reinforced soils. Based on the experimental observations, a constitutive model for fiber-reinforced soil in the frame work of modified cam clay model is proposed. Further, the detailed derivation of proposed model and the discussion on evaluation of the input model parameters from triaxial and consolidation tests are presented. The predictions from the proposed models are validated with the experimental data. From the comparison of the results from the proposed model and experiments, it is evident that the proposed model is able to capture stress-strain behavior of fiber-reinforced soils. Chapter 5 presents the experimental studies on the behavior of municipal solid waste based on the triaxial compression and consolidation tests. Based on the experimental observations, a constitutive model for municipal solid waste in the frame work of modified cam clay model is proposed which considers the mechanisms such as mechanical creep and biodegradation. It also provides detailed description of the selection of the input parameters required for the proposed model. The experimental results in the form of stress-strain and pore water pressure response are compared with the prediction from the proposed model. In addition, the applicability of the proposed model is illustrated using detailed parametric studies of parameters of the model for various ranges. Chapter 6 presents a brief study of load settlement response on municipal solid waste using a case example. The constitutive model for municipal solid waste proposed in chapter 5 is used to study the time-settlement response of municipal solid waste and to compare the results with available published models considering different mechanisms. The major conclusions from the study are presented at the end. Chapter 7 presents a brief summary and conclusions from the various studies reported in the present thesis. vi

Page generated in 0.0596 seconds