• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 15
  • 13
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 120
  • 120
  • 28
  • 25
  • 24
  • 22
  • 21
  • 19
  • 15
  • 14
  • 14
  • 13
  • 13
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Geosynthetic Reinforced Soil: Numerical and Mathematical Analysis of Laboratory Triaxial Compression Tests

Santacruz Reyes, Karla 03 February 2017 (has links)
Geosynthetic reinforced soil (GRS) is a soil improvement technology in which closely spaced horizontal layers of geosynthetic are embedded in a soil mass to provide lateral support and increase strength. GRS is popular due to a relatively new application for bridge support, as well as long-standing application in mechanically stabilized earth walls. Several different GRS design methods have been used, and some are application-specific and not based on fundamental principles of mechanics. Because consensus regarding fundamental behavior of GRS is lacking, numerical and mathematical analyses were performed for laboratory tests obtained from the published literature of GRS under triaxial compression in consolidated-drained conditions. A three-dimensional numerical model was developed using FLAC3D. An existing constitutive model for the soil component was modified to incorporate confining pressure dependency of friction angle and dilation parameters, while retaining the constitutive model's ability to represent nonlinear stress-strain response and plastic yield. Procedures to obtain the parameter values from drained triaxial compression tests on soil specimens were developed. A method to estimate the parameter values from particle size distribution and relative compaction was also developed. The geosynthetic reinforcement was represented by two-dimensional orthotropic elements with soil-geosynthetic interfaces on each side. Comparisons between the numerical analyses and laboratory tests exhibited good agreement for strains from zero to 3% for tests with 1 to 3 layers of reinforcement. As failure is approached at larger strains, agreement was good for specimens that had 1 or 2 layers of reinforcement and soil friction angle less than 40 degrees. For other conditions, the numerical model experienced convergence problems that could not be overcome by mesh refinement or reducing the applied loading rate; however, it appears that, if convergence problems can be solved, the numerical model may provide a mechanics-based representation of GRS behavior, at least for triaxial test conditions. Three mathematical theories of GRS failure available in published literature were applied to the laboratory triaxial tests. Comparisons between the theories and the tests results demonstrated that all three theories have important limitations. These numerical and mathematical evaluations of laboratory GRS tests provided a basis for recommending further research. / Ph. D.
32

Thermomechanical behaviors of active network polymers

Yu, Kai 21 September 2015 (has links)
This dissertation work focuses on the thermomechanical behaviors of two recent exciting developments in active polymers: shape memory (SM) effects and covalent adaptive network polymers with bond exchange reactions. Both polymers are active in performing prescribed functions when an external stimulus is applied. The goals of the studies are to understand complex thermomechanical behaviors of such smart polymers through experiments, develop constitutive models to describe the behaviors, and use the developed models to assist their development and engineering applications. For the polymer SM effect, we use a multi-branched constitutive model to study the SM effect achieved by polymer glass transition. The major finding of our study is that the “Reduced Time” is identified to be the unique parameter to determine the polymer shape fixity and recovery ratio under different thermo-temporal conditions in an SM cycle. Based on the theoretical knowledge, we also study the energy releasing mechanism within shape memory polymers (SMPs), multi-shape memory effects, as well as the SM properties in various composite systems, such as magnetic particles, carbon black and microvascular reinforced SMP composites. For the covalent adaptive network polymers, we adopt the emerging covalent chemistry BERs to achieve a malleable, reparable, recyclable and yet insoluble thermoset network. After being pulverized into micro-size, and then compressed either at high temperature or just facilitated by the moisture, the polymer powder could be welded on the interfaces, and assembled together into a new sample with comparable mechanical properties to the fresh sample. Theoretical models are developed to gain fundamental understanding of how the processing conditions can affect the quality of reprocessed materials. A molecular model is developed to understand welding kinetics at the interface. Such understanding is then used to develop a multiple length scale interfacial constitutive model, which can be implemented in to finite element simulation software to assist computational study of reprocessing process.
33

High Strain Rate Behaviour of Hot Formed Boron Steel with Tailored Properties

Bardelcik, Alexander January 2012 (has links)
In an automotive crash event, hot stamped, die quenched martensitic structural components have been shown to provide excellent intrusion resistance. These alloys exhibit only limited ductility, however, which may limit the overall impact performance of the component. The introduction of lower strength and more ductile “tailored” properties within some regions of a hot stamped component has the potential to improve impact performance. One approach being applied to achieving such tailored properties is through locally controlling the cooling rate within the stamping die. The primary motivation for the current work is to understand the role of cooling rate on the as-quenched mechanical response of tailored hot stampings, which has required characterization of the high strain rate mechanical behaviour of tailored hot stamped boron steel. The effect of cooling rate and resulting microstructure on the as-quenched mechanical behavior of USIBOR® 1500P boron steel at strain rates between 10-3 and 103 s-1 was investigated. Specimens quenched at rates above the critical cooling rate (~27 °C/s) exhibited a fully martensitic microstructure with a UTS of ~1,450 MPa. Sub-critical cooling rates, in the range 14°C/s to 50 °C/s, resulted in as-quenched microstructures ranging between bainitic to martensitic, respectively. Tension tests revealed that predominantly bainitic material conditions (14 °C/s cooling rate) exhibited a lower UTS of 816 MPa compared to 1,447 MPa for the fully martensitic material condition (50 °C/s cooling rate) with a corresponding increase in elongation from 0.10 to 0.15 for the bainitic condition. The reduction in area was 70% for the bainitic material condition and 58% for the martensitic material conditions which implied that a tailored region consisting of bainite may be a desirable candidate for implementation within a hot stamped component. The strain rate sensitivity was shown to be moderate for all of the as-quenched material conditions and the measured flow stress curves were used to develop a strain rate sensitive constitutive model, the “Tailored Crash Model (TCM)”. The TCM accurately reproduced the measured flow stress curves as a function of effective plastic strain, strain rate and Vickers hardness (or area fraction of martensite and bainite). The effect of deformation during quenching and the associated shift in the CCT diagram on the subsequent constitutive response was also examined for this material. Specimens were simultaneously quenched and deformed at various cooling rates to achieve a range of as-quenched microstructures that included ferrite in addition to martensite and bainite. Tensile tests conducted on these specimens at strain rates ranging from 0.003 s-1 to ~80 s-1 revealed that the presence of ferrite resulted in an increase in uniform elongation and n-value which increased overall energy absorption for a given hardness level. The strain rate sensitivity was shown to be moderate for all of the as-quenched material conditions and the TCM constitutive model was extended to account for the presence of ferrite. This extended constitutive model, the “Tailored Crash Model II (TCM II)”, has been shown to predict flow stress as a function of effective plastic strain, strain rate and area fraction of martensite, bainite and ferrite. As a validation exercise, uniaxial tension test simulations of specimens extracted from the transition zone of a hot stamped lab-scale B-pillar with tailored properties [1] were performed. The measured hardness distribution along the gauge length of the tensile specimens was used as input for the TCM constitutive model to define the element constitutive response used in the finite element (FE) models. The measured stress versus strain response and strain distribution during loading (measured using digital image correlation) was in excellent agreement with the FE models and thus validated the TCM constitutive model developed in this work. Validation of the TCM II version of the model is left for future work.
34

繰返し荷重を加えたTiNi形状記憶合金ワイヤの応力ーひずみー温度関係の計測および数値解析

内藤, 尚, NAITO, Hisashi, 松崎, 雄嗣, MATSUZAKI, Yuji, 池田, 忠繁, IKEDA, Tadashige, 佐々木, 敏幸, SASAKI, Toshiyuki 03 1900 (has links)
No description available.
35

A hierarchical framework for the multiscale modeling of microstructure evolution in heterogeneous materials

Luscher, Darby J. 31 March 2010 (has links)
All materials are heterogeneous at various scales of observation. The influence of material heterogeneity on nonuniform response and microstructure evolution can have profound impact on continuum thermomechanical response at macroscopic "engineering" scales. In many cases, it is necessary to treat this behavior as a multiscale process. This research developed a hierarchical multiscale approach for modeling microstructure evolution. A theoretical framework for the hierarchical homogenization of inelastic response of heterogeneous materials was developed with a special focus on scale invariance principles needed to assure physical consistency across scales. Within this multiscale framework, the second gradient is used as a nonlocal kinematic link between the response of a material point at the coarse scale and the response of a neighborhood of material points at the fine scale. Kinematic consistency between two scales results in specific requirements for constraints on the fluctuation field. A multiscale internal state variable (ISV) constitutive theory is developed that is couched in the coarse scale intermediate configuration and from which an important new concept in scale transitions emerges, namely scale invariance of dissipation. At the fine scale, the material is treated using finite element models of statistical volume elements of microstructure. The coarse scale is treated using a mixed-field finite element approach. The coarse scale constitutive equations are implemented in a finite deformation hyperelastic inelastic integration scheme developed for second gradient constitutive models. An example problem based on an idealized porous microstructure is presented to illustrate the approach and highlight its predictive utility. This example and a few variations are explored to address the boundary-value-problem dependent nature of length scale parameters employed in nonlocal continuum theories. Finally, strategies for developing meaningful kinematic ISVs, free energy functions, and the associated evolution kinetics are presented. These strategies are centered on the goal of accurately representing the energy stored and dissipated during irreversible processes.
36

An Inverse Computational Approach for the Identification of the Parameters of the Constitutive Model for Damaged Ceramics Subjected to Impact Loading

Krashanitsa, Roman Yurievich January 2005 (has links)
In the present study, a computational method was developed, validated and applied for the determination of parameters of a constitutive model for a ceramic material. An optimization algorithm, based on a direct search method, was applied to the determination of the load-displacement response of the specimen, and for the identification of the parameters of the constitutive model.A one-dimensional nonlinear initial-boundary value problem of wave propagation in a composite bar made of dissimilar materials was formulated and solved numerically. Convergence of the numerical scheme was studied, and range of convergence was established. Numerical scheme was validated for a number of benchmark problems with known analytical solutions, and for the problems solved using finite element method. Investigation of the accuracy of the displacement and strain responses was conducted; known limitations of the Kolsky's method for split Hopkinson pressure bar were revealed. For numerical examples considered in the present study, comparison of performance of the optimized finite-difference solver and of the finite element code LS-DYNA showed that the finite-difference code is about 10 times faster.Developed method and solutions were applied for the identification of the parameters of the Johnson-Holmquist constitutive model for five sets of experimental data for aluminum oxide AD995. Results of analysis revealed significant sensitivity of stress response to variation of fractured strength model parameters and damage model parameters.For the determined values of parameters, detailed parametric study of stress field, damage accumulation, and velocity field, was conducted with the help of the finite element method.It was found that the accuracy of the simulation using the JH-2 constitutive model changes with the rate of damage accumulation in the ceramic material.The damage patterns and history of damage development, obtained numerically, agreed qualitatively with the fracture history and its patterns, observed in the recovered Macor ceramics available in the literature.A method for image analysis of the photographic images of the lateral sides of the recovered specimen was proposed. It was used to quantify density of the damage in the specimen and to establish a better integral approach to predict amount of damage inside the specimen.
37

High Strain Rate Behaviour of Hot Formed Boron Steel with Tailored Properties

Bardelcik, Alexander January 2012 (has links)
In an automotive crash event, hot stamped, die quenched martensitic structural components have been shown to provide excellent intrusion resistance. These alloys exhibit only limited ductility, however, which may limit the overall impact performance of the component. The introduction of lower strength and more ductile “tailored” properties within some regions of a hot stamped component has the potential to improve impact performance. One approach being applied to achieving such tailored properties is through locally controlling the cooling rate within the stamping die. The primary motivation for the current work is to understand the role of cooling rate on the as-quenched mechanical response of tailored hot stampings, which has required characterization of the high strain rate mechanical behaviour of tailored hot stamped boron steel. The effect of cooling rate and resulting microstructure on the as-quenched mechanical behavior of USIBOR® 1500P boron steel at strain rates between 10-3 and 103 s-1 was investigated. Specimens quenched at rates above the critical cooling rate (~27 °C/s) exhibited a fully martensitic microstructure with a UTS of ~1,450 MPa. Sub-critical cooling rates, in the range 14°C/s to 50 °C/s, resulted in as-quenched microstructures ranging between bainitic to martensitic, respectively. Tension tests revealed that predominantly bainitic material conditions (14 °C/s cooling rate) exhibited a lower UTS of 816 MPa compared to 1,447 MPa for the fully martensitic material condition (50 °C/s cooling rate) with a corresponding increase in elongation from 0.10 to 0.15 for the bainitic condition. The reduction in area was 70% for the bainitic material condition and 58% for the martensitic material conditions which implied that a tailored region consisting of bainite may be a desirable candidate for implementation within a hot stamped component. The strain rate sensitivity was shown to be moderate for all of the as-quenched material conditions and the measured flow stress curves were used to develop a strain rate sensitive constitutive model, the “Tailored Crash Model (TCM)”. The TCM accurately reproduced the measured flow stress curves as a function of effective plastic strain, strain rate and Vickers hardness (or area fraction of martensite and bainite). The effect of deformation during quenching and the associated shift in the CCT diagram on the subsequent constitutive response was also examined for this material. Specimens were simultaneously quenched and deformed at various cooling rates to achieve a range of as-quenched microstructures that included ferrite in addition to martensite and bainite. Tensile tests conducted on these specimens at strain rates ranging from 0.003 s-1 to ~80 s-1 revealed that the presence of ferrite resulted in an increase in uniform elongation and n-value which increased overall energy absorption for a given hardness level. The strain rate sensitivity was shown to be moderate for all of the as-quenched material conditions and the TCM constitutive model was extended to account for the presence of ferrite. This extended constitutive model, the “Tailored Crash Model II (TCM II)”, has been shown to predict flow stress as a function of effective plastic strain, strain rate and area fraction of martensite, bainite and ferrite. As a validation exercise, uniaxial tension test simulations of specimens extracted from the transition zone of a hot stamped lab-scale B-pillar with tailored properties [1] were performed. The measured hardness distribution along the gauge length of the tensile specimens was used as input for the TCM constitutive model to define the element constitutive response used in the finite element (FE) models. The measured stress versus strain response and strain distribution during loading (measured using digital image correlation) was in excellent agreement with the FE models and thus validated the TCM constitutive model developed in this work. Validation of the TCM II version of the model is left for future work.
38

Developing Methods For Designing Shape Memory Alloy Actuated Morphing Aerostructures

Oehler, Stephen Daniel 2012 August 1900 (has links)
The past twenty years have seen the successful characterization and computational modeling efforts by the smart materials community to better understand the Shape Memory Alloy (SMA). Commercially available numerical analysis tools, coupled with powerful constitutive models, have been shown to be highly accurate for predicting the response of these materials when subjected to predetermined loading conditions. This thesis acknowledges the development of such an established analysis framework and proposes an expanded design framework that is capable of accounting for the complex coupling behavior between SMA components and the surrounding assembly or system. In order to capture these effects, additional analysis tools are implemented in addition to the standard use of the non-linear finite element analysis (FEA) solver and a full, robust SMA constitutive model coded as a custom user-defined material subroutine (UMAT). These additional tools include a computational fluid dynamics (CFD) solver, a cosimulation module that allows separate FEA and CFD solvers to iteratively analyze fluid-structure interaction (FSI) and conjugate heat transfer (CHT) problems, and the addition of the latent heat term to the heat equations in the UMAT to fully account for transient thermomechanical coupling. Procedures for optimizing SMA component and assembly designs through iterative analysis are also introduced at the highest level. These techniques are implemented using commercially available simulation process management and scripting tools. The expanded framework is demonstrated on example engineering problems that are motivated by real morphing structure applications, namely the Boeing Variable Geometry Chevron (VGC) and the NASA Shape Memory Alloy Hybrid Composite (SMAHC) chevron. Three different studies are conducted on these applications, focusing on component-, assembly-, and system-level analysis, each of which may necessitate accounting for certain coupling interactions between thermal, mechanical, and fluid fields. Output analysis data from each of the three models are validated against experimental data, where available. It is shown that the expanded design framework can account for the additional coupling effects at each analysis level, while providing an efficient and accurate alternative to the cost- and time-expensive legacy design-build-test methods that are still used today to engineer SMA actuated morphing aerostructures.
39

Modeling the Performance and Failure of Elastomeric Coatings Under Erosive Cavitating Flows

January 2016 (has links)
abstract: Finite element simulations modeling the hydrodynamic impact loads subjected to an elastomeric coating were performed to develop an understanding of the performance and failure mechanisms of protective coatings for cavitating environments. In this work, two major accomplishments were achieved: 1) scaling laws were developed from hydrodynamic principles and numerical simulations to allow conversion of measured distributions of pressure peaks in a cavitating flow to distributions of microscopic impact loadings modeling individual bubble collapse events, and 2) a finite strain, thermo-mechanical material model for polyurea-based elastomers was developed using a logarithmic rate formulation and implemented into an explicit finite element code. Combining the distribution of microscopic impact loads and finite element modeling, a semi-quantitative predictive framework is created to calculate the energy dissipation within the coating which can further the understanding of temperature induced coating failures. The influence of coating thickness and elastomer rheology on the dissipation of impact energies experienced in cavitating flows has also been explored. The logarithmic formulation has many desired features for the polyurea constitutive model, such as objectivity, integrability, and additive decomposition compatibility. A review and discussion on the kinematics in large deformation, including a comparison between Lagrangian and Eulerian descriptions, are presented to explain the issues in building rate-dependent constitutive models in finite strains. When comparing the logarithmic rate with other conventional rates in test examples, the logarithmic rate shows a better conservation of objectivity and integrability. The modeling framework was validated by comparing predictions against temperatures measured within coatings subjected to a cavitating jet. Both the experiments and models show that the temperatures generated, even under mild flow conditions, raise the coating temperature by a significant amount, suggesting that the failure of these coatings under more aggressive flows is thermally induced. The models show that thin polyurea coatings synthesized with shorter molecular weight soft segments dissipate significantly less energy per impact and conduct heat more efficiently. This work represents an important step toward understanding thermally induced failure in elastomers subjected to cavitating flows, which provides a foundation for design and optimization of coatings with enhanced erosion resistance. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2016
40

Atomistic to Continuum Multiscale and Multiphysics Simulation of NiTi Shape Memory Alloy

Gur, Sourav, Gur, Sourav January 2017 (has links)
Shape memory alloys (SMAs) are materials that show reversible, thermo-elastic, diffusionless, displacive (solid to solid) phase transformation, due to the application of temperature and/ or stress (/strain). Among different SMAs, NiTi is a popular one. NiTi shows reversible phase transformation, the shape memory effect (SME), where irreversible deformations are recovered upon heating, and superelasticity (SE), where large strains imposed at high enough temperatures are fully recovered. Phase transformation process in NiTi SMA is a very complex process that involves the competition between developed internal strain and phonon dispersion instability. In NiTi SMA, phase transformation occurs over a wide range of temperature and/ or stress (strain) which involves, evolution of different crystalline phases (cubic austenite i.e. B2, different monoclinic variant of martensite i.e. B19', and orthorhombic B19 or BCO structures). Further, it is observed from experimental and computational studies that the evolution kinetics and growth rate of different phases in NiTi SMA vary significantly over a wide spectrum of spatio-temporal scales, especially with length scales. At nano-meter length scale, phase transformation temperatures, critical transformation stress (or strain) and phase fraction evolution change significantly with sample or simulation cell size and grain size. Even, below a critical length scale, the phase transformation process stops. All these aspects make NiTi SMA very interesting to the science and engineering research community and in this context, the present focuses on the following aspects. At first this study address the stability, evolution and growth kinetics of different phases (B2 and variants of B19'), at different length scales, starting from the atomic level and ending at the continuum macroscopic level. The effects of simulation cell size, grain size, and presence of free surface and grain boundary on the phase transformation process (transformation temperature, phase fraction evolution kinetics due to temperature) are also demonstrated herein. Next, to couple and transfer the statistical information of length scale dependent phase transformation process, multiscale/ multiphysics methods are used. Here, the computational difficulty from the fact that the representative governing equations (i.e. different sub-methods such as molecular dynamics simulations, phase field simulations and continuum level constitutive/ material models) are only valid or can be implemented over a range of spatiotemporal scales. Therefore, in the present study, a wavelet based multiscale coupling method is used, where simulation results (phase fraction evolution kinetics) from different sub-methods are linked via concurrent multiscale coupling fashion. Finally, these multiscale/ multiphysics simulation results are used to develop/ modify the macro/ continuum scale thermo-mechanical constitutive relations for NiTi SMA. Finally, the improved material model is used to model new devices, such as thermal diodes and smart dampers.

Page generated in 0.0655 seconds