• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 10
  • 9
  • 8
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 50
  • 19
  • 18
  • 17
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Influence of microstructure in rolling contact fatigue of bearing steels with inclusions

Alley, Erick Shaw 06 April 2009 (has links)
The use of bearings can be found in virtually all aspects of mechanical systems today. Reliability of these critical components is an important issue. Fatigue performance of bearings is a function of many factors, including service conditions, loading, material properties, environmental factors, and manufacturing processes. Crack nucleation, first spall generation and spall growth in rolling contact fatigue are known to be highly sensitive to the heterogeneity of the microstructure. Yet the current state-of-the-art in the design of high performance bearing materials and microstructures is highly empirical requiring substantial lengthy experimental testing to validate the reliability and performance of these new materials and processes. The approach presented here is designed to determine relative rolling contact fatigue performance as a function of microstructural attributes. A fully three-dimensional finite element modeling allows for end effects to be captured that were not previously possible with two-dimensional plane-strain models, providing for a more realistic assessment of inclusion morphology and arbitrary orientations. The scaling of the finite element models has been optimized to capture the cyclic microplasticity around a modeled inclusion accurately and efficiently. To achieve this, two scales of geometric models were developed to incorporate different sized microstructural phenomena, with both models using traction boundary conditions derived from Hertzian contact stresses. A microstructure-sensitive material model adds additional capability. A hybrid model that includes both martensite and austenite phases with additional internal state variable to track the volume fraction of retained austenite due to stress-assisted transformation were developed. This represents an advance over previous models where transform plasticity and crystal plasticity were not simultaneously accounted for in a homogenized element containing both phases. Important links between microstructural features and fatigue indicator parameters (and relative fatigue performance) were determined. Demonstration cases show the relationship between inclusion orientation and relative fatigue performance, allowing for the identification of critical angles which maximize fatigue and reduce performance. An additional case study showed that increasing initial volume fraction of retained austenite reduces relative fatigue life. The tools developed allow for investigations of the influence of many microstructural aspects on relative fatigue performance with a numerical model that were not previously possible.
42

Microstructural alterations in bearing steels under rolling contact fatigue

Fu, Hanwei January 2017 (has links)
The formation of microstructural alterations in bearing steels under rolling contact fatigue (RCF) is systematically studied. A literature review summarizes current understanding in this field, leading to the key to the formation of these microstructural features being carbon redistribution as a consequence of cyclic rolling contact. In this context, a novel theory is postulated to describe the migration of carbon caused by gliding dislocations. The theory combines the Cottrell atmosphere theory with the Orowan equation and is capable of quantifying the dislocation-assisted carbon flux. Based on the proposed theory, models are suggested for different types of microstructural alterations formed in rolling contact fatigued bearings – dark etching regions (DERs), white etching bands (WEBs) and white etching areas (WEAs). Very good agreement is obtained between the predications made by the models and the experimental data from both this research and the literature. Moreover, the models consider the effects of contact pressure, temperature, rotational speed and number of cycles, and thus can be applied for universal RCF testing conditions. The reproduced microstructural features are also characterized using advanced characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT), with the observation validating the postulated formation mechanisms. It is demonstrated that DERs, WEBs and WEAs follow the same principle during formation – strain induced carbon redistribution. This is the first time that these microstructural alterations are quantitatively described using a unified theory. The achievements obtained from this research can be far reaching. It not only leads to great progress in understanding the phenomenology of RCF in bearing steels, but also can be further extended to other scenarios with similar phenomena such as severe plastic deformation and hydrogen embrittlement.
43

Analysis of the microstructure transformation (wel formation) in pearlitic steel used in relevant engineering wear systems. / Análise da transformação microestrutural (formação da camada branca) em aço perlítico utilizado em relevantes sistemas de desgaste em engenharia.

Juan Ignacio Pereira Agudelo 14 May 2018 (has links)
In this thesis, the behavior of pearlitic steel was characterized under controlled wear conditions in the laboratory and service conditions in two ore mining stages, comminution and transportation. The thesis consists in three experimental chapters, divided according to the tribosystems analyzed. On all the chapters Electro Microscopy techniques for the microstructural analysis were employed. Scanning Electron Microscopy (SEM), Focused Ion Beam (FIB-SEM), Electron Backscatter Diffraction (EBSD) and Transmission Electron Microscopy (TEM) were used. The first experimental chapter shows the analysis of the pearlite under abrasive wear with loose abrasive particles in multi-events conditions. The sample was taken from Semi-Autogenous Grinding mills (SAG) and experimental simulation was carried out in laboratory using the Dry Sand Rubber Wheel Abrasion Test (DSRW). The results show a polycrystalline layer formation in both cases, characterized by ultra-fine grains of ferrite in the layer closer to the surface. It was also concluded that the DSRW can simulate the wear produced on field (superficial and microstructural features) in conditions of higher normal load than recommended by the ASTM Standard G65. The second experimental chapter explores the characterization of the microstructure after the indenter pass in scratch test using two conditions of normal load applied and five sequences of scratch. The microstructural analysis shows the formation of two subsuperficial layers identified by the level of the microstructural alterations. In the subsuperficial layer (close to the surface), the formation of new ultra-fine grains of ferrite was observed. A second layer was observed deeper in the sample and denominated as layer of the microstructure transition, characterized by the combination of deformed (reduction of the interlamellar spacing) and pearlite colonies not affected plastically by the mechanical loading. On this layer, the crystallographic texture in RD // in samples tested at 4 N (normal load) and one-pass scratch was determined. Later, on this chapter, the microstructure in a ground rail (industrial procedure characterized as a multi-event scratch test) was analyzed. Two grinding conditions were used for the analysis with variation of the grinding linear speed and load on the grinding stones (discs). The combination of low grinding speed and high load promotes a higher deformed layer formation beneath the patch zone and low randomized orientation of the pearlite colonies. Finally, in the third experimental chapter, the pearlitic characterization was concluded with the study of samples of railway wheel and rail under wear in service and Rolling Contact Fatigue (RCF) in laboratory. The laboratorial simulation was carried out using the twin-disc rolling contact tribometer with a variation of number of cycles. The characterization of railway wheel shows that the WEL is characterized by levels of breaking and aligned cementite and zones with dissolution of the carbon atom in the ferrite to form the supersaturated carbon ferrite. The polycrystalline ferrite formation (ultra-fine grains) in the sub-superficial layer and it was identified a preferential orientation of RD // in the layer of microstructural transition. The results of the laboratory test show surface crack nucleation and propagation at low angle in the more severe deformed layer. The microstructure of the layer consists in polycrystalline ferrite and the cementite dissolution. / Nesta tese foi caracterizado o comportamento do aço perlítico em condições controladas de desgaste em laboratório e em serviço em dois estágios do processo de mineração de minério, cominução e transporte ferroviário. A tese consiste em três capítulos experimentais divididos segundo o tribosistema analisado. Em todos os capítulos do trabalho foi utilizada a técnica de microscopia eletrônica para análise microestrutural. Foi utilizado Microscopia eletrônica de varredura (MEV), Focused Ion Beam (FIB-SEM), Electron Backscatter Diffraction (EBSD) e Microscopia eletrônica de transmissão (MET). O primeiro capítulo experimental mostra a análise da perlita in condições de desgaste abrasivo com partículas soltas em eventos múltiplos. As amostras foram tiradas de um moinho semi-autógeno (SAG) e realizada uma simulação experimental do desgaste em condições controladas usando o tribômetro de roda de borracha (RWAT). Os resultados mostraram a formação de camada branca em ambas as condições de análise, consistindo em uma camada poli cristalina caracterizada pela formação de grãos ultrafinos na camada mais próxima da superfície de desgaste. Também foi concluído que a roda de borracha pode simular o desgaste produzido nos moinhos SAG tanto nas características superficiais quanto microestruturais em condições de maior severidade as comumente utilizadas na norma ASTM G65 (procedimento B). O Segundo capítulo experimental explora a caracterização da microestrutura depois da passagem do endentador no ensaio de riscamento (scratch test) utilizando duas condições de carga normal aplicada e 5 sequências de riscamento. A análise microestrutural mostrou a formação de duas camadas subsuperficiais identificadas pelo nível de alteração microestrutural. Na camada mais próxima da superfície de desgaste foi observada a formação de grãos ultrafinos de ferrita. A segunda camada identificada mais profundamente na amostra, denominada como camada de transição, é caracterizada pela combinação de colônias deformadas (redução do espaçamento interlamelar) e camadas não afetadas pelos esforços produzidos no contato. Nesta camada foi determinada a texturização em direção RD // nas amostras testadas a 4 N (carga normal aplicada) e uma passada. Posteriormente à análise de riscamento foi caracterizada a microestrutura de uma amostra tirada de um trilho esmerilhado (processo industrial que pode ser considerado como aplicação do ensaio de riscamento). Foram consideradas duas condições de esmerilhamento com variação de velocidade de esmerilhamento (deslocamento linear do veículo esmerilhador) e potência dos motores dos rebolos usada no procedimento. A combinação de baixa velocidade de esmerilhamento e alta potência nos motores controladores dos rebolos promoveu uma grande deformação nas camadas subsuperficiais na região de contato e uma baixa aleatoriedade das orientações cristalográficas das colônias de perlita. Finalmente, no capítulo três, a caracterização da microestrutura perlitica foi finalizada com o estudo de amostras de roda e trilho em condições de desgaste em campo e de Rolling Contact Fatigue (RCF) em ensaios de laboratório. A simulação experimental foi realizada utilizando o tribômetro twin-disc rolling (configuração disco-disco) com variação do número de ciclos. A caracterização da roda ferroviária mostrou a formação da camada branca caracterizada por níveis de cementita fraturada e alinhada em direção do movimento de rolamento/deslizamento com áreas de dissolução do átomo de carbono na ferrita formando uma ferrita supersaturada. Foi identificado a formação de policristais de ferrita (grãos ultrafinos) na camada mais superficial e uma orientação preferencial RD // na camada de transição. Os resultados dos ensaios de laboratório mostraram a nucleação de trincas superficiais se propagando a baixo ângulo na camada branca. A transformação microestrutural dessa camada após ensaios de laboratório consiste em policristais de ferrita e dissolução da cementita.
44

Hydrogen trapping in bearing steels : mechanisms and alloy design

Szost, Blanka Angelika January 2013 (has links)
Hydrogen embrittlement is a problem that offers challenges both to technology and to the theory of metallurgy. In the presence of a hydrogen rich environment, applications such as rolling bearings display a significant decrease in alloy strength and accelerated failure due to rolling contact fatigue. In spite of these problems being well recognised, there is little understanding as to which mechanisms are present in hydrogen induced bearing failure. The objective of this thesis are twofold. First, a novel alloy combining the excellent hardness of bearing steels, and resistance to hydrogen embrittlement, is proposed. Second, a new technique to identify the nature of hydrogen embrittlement in bearing steels is suggested. The new alloy was a successful result of computer aided alloy design; thermodynamic and kinetic modelling were employed to design a composition and heat treatment combining (1) fine cementite providing a strong and ductile microstructure, and (2) nano-sized vanadium carbide precipitates acting as hydrogen traps. A novel technique is proposed to visualise the migration of hydrogen to indentation-induced cracks. The observations employing this technique strongly suggest that hydrogen enhanced localised plasticity prevails in bearing steels. While proposing a hydrogen tolerant bearing steel grade, and a new technique to visualize hydrogen damage, this thesis is expected to aid in increasing the reliability of bearings operating in hydrogen rich environments.
45

Návrh systému pro testování valivých ložisek s proměnnými parametry mazání / Development of a testing system for evaluation of rolling bearings with variable lubrication parameters

Škoviera, Jozef January 2017 (has links)
The presented diploma thesis deals with the design of a test system for rolling bearings, which allows the change of the lubrication parameters (e.g. changing of the relubrica-tion interval). In the document, the reader first learns about the meaning of lubrication of rolling bearings, the possibilities of lubricant supply to the bearing (specifically for the supply of grease) and the possibilities of dosing control. Subsequently in the document is described the present state of experimental stations for testing rolling bearings, which is available at the Institute of Machine and Industrial Design. The end of the part about current state of knowledge is also mentioned the possibility of speeding up fatigue tests. In the next part, the author describes his own solution. The result is the design of an experimental station (for option to relubricate with grease), the creation of a lubrication control platform and the creation of a basic program. Part of the work is also verification experiments and drawing documentation.
46

Vliv dynamického zatěžování na kontaktní únavové charakteristiky ložiskového materiálu / Influence of dynamic loading on the contact fatigue characteristics of bearing material

Hložek, Jiří January 2019 (has links)
This thesis deals with the study of sudden step changes observed in model testing of standard bearing steel 100Cr6. Methodology of experiments with step change of load is proposed and applied in measurements. Three complete series of experiments were conducted, and rating life was determined for each loading trend. Based on the experiments carried out, it was found that the selected steel is able to withstand the sudden step of load changes, despite the fact that it is not material of choise for this type of load. Part of this work was to verify functionality of the innovated test stations AXMAT with modern diagnostics and a new control system, and also of the hydraulic variant of AXMAT, which allows to remotely derive dynamic loading of the test sample.
47

Vliv cílené modifikace topografie na únavové poškozování třecích povrchů / Effect of surface texturing on rolling contact fatigue of rubbing surfaces

Popelka, Jakub January 2008 (has links)
Diploma thesis describes influence of directed modificated topography of frictional surfaces on fatigue wear non-conformal incurvate solids. It was created 3D parametric model of experimental test rig in modelling environment Autodesk Inventor. With the help of model was designed and carried reconstruction of experimental test rig so to possible obtain repeatable results under the sliding conditions of frictional surfaces. It enabled show influence of surface iregularities (dents) frictional surfaces on contact fatigue service life in conditions mixed lubrication regime and different values of slide to roll ratio.
48

Modelling of surface initiated rolling contact fatigue crack growth using the asperity point load mechanism

Hannes, Dave January 2011 (has links)
<p>QC 20110523</p>
49

Growth of cracks at rolling contact fatigue

Hannes, Dave January 2008 (has links)
Rolling contact fatigue is a problem encountered with many machine elements.In the current report a numerical study has been performed in order to predictthe crack path and crack propagation cycles of a surface initiated rolling contactfatigue crack. The implementation of the contact problem is based on theasperity point load mechanism for rolling contact fatigue. The practical studiedproblem is gear contact. Different loading types and models are studied andcompared to an experimental spall profile. Good agreement has been observedconsidering short crack lengths with a distributed loading model using normalloads on the asperity and for the cylindrical contact and a tangential load on theasperity. Several different crack propagation criteria have been implemented inorder to verify the validity of the dominant mode I crack propagation assumption.Some general characteristics of rolling contact fatigue cracks have beenhighlighted. A quantitative parameter study of the implemented model hasbeen performed. / Utmattning med rullande kontakter är ett ofta förekommande problem för många maskinelement. I den aktuella rapporten utfördes en numerisk studieför att förutsäga sprickvägen hos utmattningssprickor som initierats i ytan vidrullande kontakter. Implementeringen av kontaktproblemet bygger på asperitpunktlastmekanismen för rullande kontakter. Studien av kontaktproblemetär tillämpad till kugghjul. Olika belastningstyper och modeller studeradesoch jämfördes med profilen hos en experimentell spall. Bra överensstämmelseobserverades för korta spricklängder när en modell med fördelad belastninganvänds för en belastningstyp där en normalbelastning agerar på asperiten ochvid cylindriska kontakten och en tangentialbelastning införs på asperiten. Olikakriterier för spricktillväxt implementerades för att verifiera giltigheten av antagandetatt mode I spricktillväxt är dominant. Några generella kännetecken avutmattningssprickor med rullande kontakter framhävdes. En kvantitativ parameterstudie för den implementerade modellen utfördes.
50

Korelace změny signálu AE s rozvojem kontaktního poškození / Correlation of AE Signal Changes to Rolling Contact Damage Propagation

Nohál, Libor January 2015 (has links)
This PhD thesis deals with the experimental study of more precise rolling contact fatigue damage detection using acoustic emission method. A series of experiments was carried out on two representatives bearing steels and the analysis of sensitivity for the presence of contact damage was performed on selected parameters of acoustic emission. The extent of damage was classified into four classes and signal parameters the most characterizing the development of damage were correlated with the extent of damage. It was also verified the influence of lubricants on acoustic emission signals. The results have an impact on the implementation of more precise rolling contact fatigue tests and evaluation of parameters of acoustic emission signal. On the basis of experiments was established methodology for more precise RCF testing method using acoustic emission on test-rig AXMAT II.

Page generated in 0.0861 seconds