• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influences of distribution system and advanced treatment technology on drinking water quality

Lee, Wei-li 14 June 2006 (has links)
The purposes of this study include: (1) investigating the reasons why drinking water quality degrades during transportation in the distribution system and developing an easy and effective tool to evaluate the status of distribution system; (2) investigating residents¡¦ satisfaction with advanced treated drinking water. It is found that the main reason of drinking water degradation is that most people don¡¦t flush the drinking water storage facilities routinely. It is also found that although most respondents are satisfied with advanced treated drinking water, nearly 40% of local residents still buy bottle water instead of drinking tap water. Therefore, Taiwan Water Supply Corp. (TWSC) should let people know the importance of flushing water storage facilities routinely and what TWSC has done to improve drinking water quality. The LSI (Langelier Saturation Index) of most water samples is negative, which means that the drinking water is corrosive when too much hardness is removed to comply with the regulations. A simple, efficient and cost-effective method is developed to provide TWSC sufficient information to solve the problems regarding water quality degradations in distribution systems. By using contour maps of different water quality parameters, TWSC can easily identifies locations with potential problems and easily assesses the necessity and appropriate locations of building re-chlorination stations, even though the lack of information regarding pipeline material, hydraulic conditions, thickness of biofilm¡Ketc.
2

Improving the Treated Water for Water Quality and Good Tastes from Traditional and Advanced Water Treatment Plants

HAn, Chia-Yun 19 July 2007 (has links)
The purpose of this research is to compare the performance for the water quality of two traditional water treatment plants (WTP) and three advanced water treatment plants (AWTP), and to investigate the treated drinking water in distribution systems in Kaohsiung area for promoting the consumers¡¦ self-confidence. Samples of the treated water from five major water supplies¡¦ WTP(noted numbers: WF1, WF2, WF3, WF4 and WF5) and the tap water at user¡¦s end were selected in planning of this work. It was the traditional WTP stage with treated drinking water and distribution systems in Kaohsiung area During 91 year to 92 year, so we conducted WF1 and WF2 of 8 times sampling and WF3, WF4 and WF5 for 2 times sampling at this stage. In and after 93 year, we conducted WF1, WF2, WF3, WF4 and WF5 of 8 times sampling from 93 year to 94year for the advanced WTP stage. The major tests related with the parameters of influencing operation condition included pH, odor (abbreviated as TON), total trihalomethane (abbreviated as THMs), haloacetic acids (abbreviated as HAAs), nitrogen (abbreviated as, NH3-N, hardness, total dissolved solid (abbreviated as TDS), alkalinity, total organic carbon (abbreviated as TOC), calcium ion, flavor profile analysis (abbreviated as FPA), and suspension observation in boiling with treated waters from two WTP , three AWTP and the tap water at user¡¦s end in a distribution system. It point out the better quality of treated water used the advanced water treatment plants than that of traditional water treatment plant. The items with improvement of water quality, including THMs, HAAs, hardness, TON, 2-MIB, TOC, alkinality and Ca ions concentration, is presented. Their efficiency for improvement are respectively 47%, 29%, 43%, 11%, 29%, 15%, 14% and 34%. The insignificant efficiency were concentrated at TDS, NH3-N, pH and FPA. Water quality of six items are fitted for the drinking water standard at present in Taiwan (such as: odor<3 TON; THMs<0.1 mg/L; NH3-N<0.1 mg/L; TDS< 600 mg/L; Hardness <400 mg as CaCO3/L; 6.0<pH <8.5). The HAAs is fit for water quality USEPA first stage water standard (HAAs<80 £gg/L). In the suspension observation in boiling experimentation, we cooperate with the experiment of suspension observation in boiling to do contrast with TDS and hardness experiment, which can find out, the treated water after the advanced procedure, the time with boiling increases, the condition of its suspended substance has great reduction. It show treated drinking water after the advanced WTP can huge improve the traditional WTP¡¦s white suspended substance or white material precipitate questions in the boiling. In the contour map for water quality , we found that Gushan District, Lingya District, Qianzhen District, Xiaogang District, Fongshan City and Daliao Shiang etc had higher concentration profile in the four season (included spring, summer, fall and winter ) and during two seasons (included raining and drying) in the water supplies systems. We hope the contour map can offer a clear information of conveyer system administrator of drinking water and let administrator know where areas have high concentration produced in water quality management planning, in order to having priority or effective solutions (included washing the pipeline, changing the pipeline, changing the water flow, etc.).
3

A Geophysical Study of Subsurface Paleokarst Features and Voids at Ohio Caverns, Champaign County, Ohio

Scaggs, Laura M. 09 June 2014 (has links)
No description available.

Page generated in 0.0406 seconds