• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Régularisation et temps conjugués bang-bang pour des problèmes de contrôle optimal / Regularization and bang-bang conjugate times in optimal control

Silva, Cristiana 11 October 2010 (has links)
On considère le problème de contrôle optimal de temps minimal pour des systèmes affine et mono-entrée en dimension finie, avec conditions initiales et finales fixées, où le contrôle scalaire prend ses valeurs dans un intervalle fermé. Lors de l'application d'une méthode de tir pour résoudre ce problème, on peut rencontrer des obstacles numériques car la fonction de tir n'est pas lisse lorsque le contrôle est bang-bang. Pour ces systèmes, dans le cas bang-bang, un concept théorique de temps conjugué a été défini, toutefois les algorithmes de calcul direct sont difficiles à appliquer. En outre, les questions théoriques et pratiques de la théorie du temps conjugué sont bien connues dans le cas lisse, et des outils efficaces de mise en oeuvre sont disponibles. On propose une procédure de régularisation pour laquelle les solutions du problème de temps minimal dépendent d'un paramètre réel positif suffisamment petit et sont définis par des fonctions lisses en temps, ce qui facilite l'application de la méthode de tir simple. Sous des hypothèses convenables, nous prouvons un résultat de convergence forte des solutions du problème régularisé vers la solution du problème initial, lorsque le paramètre réel tend vers zéro. Le calcul des temps conjugués pour les trajectoires localement optimales du problème régularisé est standard. Nous prouvons, sous des hypothèses appropriées, la convergence du premier temps conjugué du problème régularisé vers le premier temps conjugué du problème de contrôle bang-bang initial, quand le paramètre réel tend vers zéro. Ainsi, on obtient une procédure algorithmique efficace pour calculer les temps conjugués dans le cas bang-bang. / In this thesis we consider a minimal time control problem for single-input control-affine systems in finite dimension with fixed initial and final conditions, where the scalar control take values on a closed interva1. When applying a shooting method for solving this problem, one may encounter numerical obstacles due to the fact that the shooting function is non smooth whenever the control is bang-bang. For these systems a theoretical concept of conjugate time has been defined in the bang-bang case, however direct algorithms of computation are difficult to apply. Besides, theoretical and practical issues for conjugate time theory are well known in the smooth case, and efficient implementation tools are available. We propose a regularization procedure for which the solutions of the minimal time problem depend on a small enough real positive parameter and are defined by smooth functions with respect to the time variable, facilitating the application of a single shooting method. Under appropriate assumptions, we prove a strong convergence result of the solutions of the regularized problem towards the solution of the initial problem, when the real parameter tends to zero. The conjugate times computation of the locally optimal trajectories for the regularized problem falls into the standard theory. We prove, under appropriate assumptions, the convergence of the first conjugate time of the regularized problem towards the first conjugate time of the initial bang-bang control problem, when the real parameter tends to zero. As a byproduct, we obtain an efficient algorithmic way to compute conjugate times in the bang-bang case.
2

Régularisation et temps conjugués bang-bang pour des problèmes de contrôle optimal

Silva, Cristiana 11 October 2010 (has links) (PDF)
On considère le problème de contrôle optimal de temps minimal pour des systèmes affine et mono-entrée en dimension finie, avec conditions initiales et finales fixées, où le contrôle scalaire prend ses valeurs dans un intervalle fermé. Lors de l'application d'une méthode de tir pour résoudre ce problème, on peut rencontrer des obstacles numériques car la fonction de tir n'est pas lisse lorsque le contrôle est bang-bang. Pour ces systèmes, dans le cas bang-bang, un concept théorique de temps conjugué a été défini, toutefois les algorithmes de calcul direct sont difficiles à appliquer. En outre, les questions théoriques et pratiques de la théorie du temps conjugué sont bien connues dans le cas lisse, et des outils efficaces de mise en oeuvre sont disponibles. On propose une procédure de régularisation pour laquelle les solutions du problème de temps minimal dépendent d'un paramètre réel positif suffisamment petit et sont définis par des fonctions lisses en temps, ce qui facilite l'application de la méthode de tir simple. Sous des hypothèses convenables, nous prouvons un résultat de convergence forte des solutions du problème régularisé vers la solution du problème initial, lorsque le paramètre réel tend vers zéro. Le calcul des temps conjugués pour les trajectoires localement optimales du problème régularisé est standard. Nous prouvons, sous des hypothèses appropriées, la convergence du premier temps conjugué du problème régularisé vers le premier temps conjugué du problème de contrôle bang-bang initial, quand le paramètre réel tend vers zéro. Ainsi, on obtient une procédure algorithmique efficace pour calculer les temps conjugués dans le cas bang-bang.
3

Contrôle en temps optimal et nage à bas nombre de Reynolds

Lohéac, Jérôme 06 December 2012 (has links) (PDF)
Cette thèse est divisée en deux parties, le fil directeur étant la contrôlabilité en temps optimal. Dans la première partie, après un rappel du principe du maximum de Pontryagin dans le cas des systèmes de dimension finie, nous mettrons en œuvre ce principe sur le cas d'un intégrateur non-holonome connu sous le nom de système de Brockett pour lequel nous imposons des contraintes sur l'état. La difficulté de cette étude provient du fait que l'on considère un problème de contrôle avec des contraintes sur l'état. Après cet exemple, nous nous intéressons à une extension du principe du maximum de Pontryagin au cas des systèmes de dimension infinie. Plus précisément, l'extension que nous considérons s'applique au cas de systèmes exactement contrôlables en tout temps. Typiquement, ce résultat s'applique à l'équation de Schrödinger avec contrôle interne. Pour de tels systèmes, sous une condition de contrôlabilité approchée, depuis un ensemble de temps non négligeable, nous montrons l'existence d'un contrôle bang-bang. Dans la seconde partie, nous étudions le problème de la nage à bas nombre de Reynolds. Une modélisation physique convenable nous permet de le formaliser comme un problème de contrôle. Nous obtenons alors un résultat de contrôlabilité sur ce problème. Plus précisément, nous montrons que quelque soit la forme du nageur, celui-ci peut se déformer légèrement pour suivre une trajectoire imposée. Nous étudions ensuite le cas d'un nageur à symétrie axiale. Les résultats de la première partie permettent alors la recherche d'un contrôle en temps optimal.

Page generated in 0.0507 seconds