Spelling suggestions: "subject:"contrôle géométriques""
1 |
Inverse Optimal Control : theoretical study / Contrôle Optimal Inverse : étude théoriqueMaslovskaya, Sofya 11 October 2018 (has links)
Cette thèse s'insère dans un projet plus vaste, dont le but est de s'attaquer aux fondements mathématiques du problème inverse en contrôle optimal afin de dégager une méthodologie générale utilisable en neurophysiologie. Les deux questions essentielles sont : (a) l'unicité d'un coût pour une synthèse optimale donnée (injectivité); (b) la reconstruction du coût à partir de la synthèse. Pour des classes de coût générales, le problème apparaît très difficile même avec une dynamique triviale. On a donc attaqué l'injectivité pour des classes de problèmes spéciales : avec un coût quadratique, la dynamique étant soit non-holonome, soit affine en le contrôle. Les résultats obtenus ont permis de traiter la reconstruction pour le problème linéaire-quadratique. / This PhD thesis is part of a larger project, whose aim is to address the mathematical foundations of the inverse problem in optimal control in order to reach a general methodology usable in neurophysiology. The two key questions are : (a) the uniqueness of a cost for a given optimal synthesis (injectivity) ; (b) the reconstruction of the cost from the synthesis. For general classes of costs, the problem seems very difficult even with a trivial dynamics. Therefore, the injectivity question was treated for special classes of problems, namely, the problems with quadratic cost and a dynamics, which is either non-holonomic (sub-Riemannian geometry) or control-affine. Based on the obtained results, we propose a reconstruction algorithm for the linear-quadratic problem.
|
2 |
Détection numérique de petites imperfections de conductivité en 2D et 3D par une méthode dynamique basée sur l'équation des ondes et le contrôle géométriqueDuval, Jean-Baptiste 19 October 2009 (has links) (PDF)
Dans cette thèse, nous considérons la solution numérique, dans des domaines bornés bidimensionnels et tridimensionnels, d'un problème inverse pour la localisation d'imperfections de petits volumes contenues dans un domaine sain de conductivité différente que celle des inhomogénéités. L'identification de ces inhomogénéités repose sur une approche dynamique basée sur l'équation des ondes. Notre algorithme numérique s'appuie sur le couplage d'une solution élément fini de l'équation des ondes, d'une méthode de contrôlabilité exacte et d'une inversion de Fourier pour localiser les centres des imperfections. Une application pratique de cette technique pourrait être la localisation de mines anti-personnel ou de tumeurs. Des résultats numériques, en deux et trois dimensions, montrent la robustesse et la précision de l'approche pour retrouver des imperfections, placées aléatoirement, à partir de mesures sur la frontière complète ou sur une partie de la frontière.
|
3 |
Contrôle géométrique et méthodes numériques : application au problème de montée d'un avion. / Geometric control and numerical methods and the climbing problem of an aircraftGoubinat, Damien 14 June 2017 (has links)
Ce travail s’intéresse à la phase de montée d’un aéronef civil. Les trajectoires minimisant le temps de montée ainsi que que celles minimisant la consommation de carburant sont étudiées au travers du contrôle optimal géométrique. La dynamique associée à la phase de montée possède un phénomène dit de perturbation singulière. Ce phénomène, présent dans les systèmes multi-échelle, rend difficile la résolution numérique du problème de contrôle associé. La réduction desystème hamiltonien, permettant de s’affranchir de la difficulté numérique introduite par la perturbation singulière, est étudiée d’un point de vue théorique puis numérique. Dans un second temps, le système réduit est étudié géométriquement. L’utilisation des outils du contrôle géométrique combinée à celui des synthèses à temps court permet de déterminer des familles de trajectoires localement temps-optimales pour des temps courts. Cette étude est complétée par une étude des trajectoires temps-optimales en présence de contraintes d’état. D’un point de vue plus numérique, les méthodes directes et indirectes sont utilisées pour résoudre les différents problèmes. Une synthèse locale est alors réalisée en partant des familles de trajectoires déterminées pour des temps courts. Une étude des trajectoires minimisant la consommation de carburant est également réalisée. / This work concerns the climbing phase of a civil aircraft. The trajectories which minimize the climbing time and the one which minimize the fuel consumption are studied throughout geometric optimal control. The climbing phase dynamics presents a characteristics called singular perturbation. This phenomena exists in multi-scale dynamics which makes the numerical study of the associated control problem difficult. Theoretically and numerically we study the reduction of hamiltonian system. This concept allows to remove the numerical complexity induced by the singular perturbation. Secondly, the reduced system is studied geometrically. Families of timeoptimal trajectories in small time are determined thanks to geometric control tools and small time synthesis. A study of time-optimal trajectories with active state constraints completes this work. From a more numerical point of view, direct and indirect methods are used to solve the climbing problems. A local synthesis for time-optimal trajectory is established starting from the families of trajectory determined in small time. A study of minimum fuel consumption trajectories is also realized.
|
4 |
Théorie de contrôle et systèmes dynamiques / Control theory and dynamical systemsLazrag, Ayadi 25 September 2014 (has links)
Cette thèse est divisée en trois parties. Dans la première partie, nous commençons par décrire des résultats très connus en théorie du contrôle géométrique tels que le théorème de Chow-Rashevsky, la condition de rang de Kalman, l'application Entrée-Sortie et le test linéaire. De plus, nous définissons et nous étudions brièvement la contrôlabilité locale au voisinage d'un contrôle de référence au premier et au second ordre. Dans la deuxième partie, nous donnons une preuve élémentaire du lemme de Franks linéaire pour les flots géodésiques qui utilise des techniques basiques de théorie du contrôle géométrique. Dans la dernière partie, étant donnée une variété Riemanienne compacte, nous prouvons un lemme de Franks uniforme au second ordre pour les flots géodésiques et on applique le résultat à la théorie de la persistance. Dans cette partie, nous introduisons avec plus de détails les notions de contrôlabilité locale au premier et au second ordre. En effet, nous donnons un résultat de contrôlabilité au second ordre dont la preuve est longue et technique. / This thesis is devided into three parts. In the first part we begin by describing some well known results in geometric control theory such as the Chow Rashevsky Theorem, the Kalman rank condition, the End-Point Mapping and the linear test. Moreover, we define and study briefly local controllability around a reference control at first and second order. In the second part we provide an elementary proof of the Franks lemma for geodesic flows using basic tools of geometric control theory. In the last part, given a compact Riemannian manifold, we prove a uniform Franks' lemma at second order for geodesic flows and apply the result in persistence theory. In this part we introduce with more details notions of local controllability at first and second order. In fact, we provide a second order controllability result whose proof is long and technical.
|
5 |
Stabilisation et asymptotique spectrale de l’équation des ondes amorties vectorielle / Stabilization and spectral asymptotics of the vectorial damped wave equationKlein, Guillaume 12 December 2018 (has links)
Dans cette thèse nous considérons l’équation des ondes amorties vectorielle sur une variété riemannienne compacte, lisse et sans bord. L’amortisseur est ici une fonction lisse allant de la variété dans l’espace des matrices hermitiennes de taille n. Les solutions de cette équation sont donc à valeurs vectorielles. Nous commençons dans un premier temps par calculer le meilleur taux de décroissance exponentiel de l’énergie en fonction du terme d’amortissement. Ceci nous permet d’obtenir une condition nécessaire et suffisante la stabilisation forte de l’équation des ondes amorties vectorielle. Nous mettons aussi en évidence l’apparition d’un phénomène de sur-amortissement haute fréquence qui n’existait pas dans le cas scalaire. Dans un second temps nous nous intéressons à la répartition asymptotique des fréquences propres de l’équation des ondes amorties vectorielle. Nous démontrons que, à un sous ensemble de densité nulle près, l’ensemble des fréquences propres est contenu dans une bande parallèle à l’axe imaginaire. La largeur de cette bande est déterminée par les exposants de Lyapunov d’un système dynamique défini à partir du coefficient d’amortissement. / In this thesis we are considering the vectorial damped wave equation on a compact and smooth Riemannian manifold without boundary. The damping term is a smooth function from the manifold to the space of Hermitian matrices of size n. The solutions of this équation are thus vectorial. We start by computing the best exponential energy decay rate of the solutions in terms of the damping term. This allows us to deduce a sufficient and necessary condition for strong stabilization of the vectorial damped wave equation. We also show the appearance of a new phenomenon of high-frequency overdamping that did not exists in the scalar case. In the second half of the thesis we look at the asymptotic distribution of eigenfrequencies of the vectorial damped wave equation. Were show that, up to a null density subset, all the eigenfrequencies are in a strip parallel to the imaginary axis. The width of this strip is determined by the Lyapunov exponents of a dynamical system defined from the damping term.
|
6 |
Contrôle en temps optimal et nage à bas nombre de ReynoldsLohéac, Jérôme 06 December 2012 (has links) (PDF)
Cette thèse est divisée en deux parties, le fil directeur étant la contrôlabilité en temps optimal. Dans la première partie, après un rappel du principe du maximum de Pontryagin dans le cas des systèmes de dimension finie, nous mettrons en œuvre ce principe sur le cas d'un intégrateur non-holonome connu sous le nom de système de Brockett pour lequel nous imposons des contraintes sur l'état. La difficulté de cette étude provient du fait que l'on considère un problème de contrôle avec des contraintes sur l'état. Après cet exemple, nous nous intéressons à une extension du principe du maximum de Pontryagin au cas des systèmes de dimension infinie. Plus précisément, l'extension que nous considérons s'applique au cas de systèmes exactement contrôlables en tout temps. Typiquement, ce résultat s'applique à l'équation de Schrödinger avec contrôle interne. Pour de tels systèmes, sous une condition de contrôlabilité approchée, depuis un ensemble de temps non négligeable, nous montrons l'existence d'un contrôle bang-bang. Dans la seconde partie, nous étudions le problème de la nage à bas nombre de Reynolds. Une modélisation physique convenable nous permet de le formaliser comme un problème de contrôle. Nous obtenons alors un résultat de contrôlabilité sur ce problème. Plus précisément, nous montrons que quelque soit la forme du nageur, celui-ci peut se déformer légèrement pour suivre une trajectoire imposée. Nous étudions ensuite le cas d'un nageur à symétrie axiale. Les résultats de la première partie permettent alors la recherche d'un contrôle en temps optimal.
|
Page generated in 0.0793 seconds